SIMULTANEOUS HONG-MANDEL'S HIGHER-ORDER SQUEEZING OF BOTH QUADRATURE COMPONENTS IN SUPERPOSITION OF TWO COHERENT STATES

PANKAJ KUMAR¹

Department of Physics, Bhavan's Mehta Mahavidyalaya (V. S. Mehta College of Science), Bharwari, Kaushambi, U.P, India

ABSTRACT

We study simultaneous Hong-Mandel's higher-order squeezing of the two quadrature components by considering Hermitian operator, $X_0 = X_1 \cos\theta + X_2 \sin\theta$, in the most general superposition state $|\psi\rangle = Z_1 \alpha\rangle + Z_2 |\beta\rangle$, of two coherent states $|\alpha\rangle$ and $|\beta\rangle$. Here, Hermitian operators $X_{1,2}$ are defined by $X_1 + iX_2 = a$, a is the annihilation operator, is an arbitrary angle, Z_1, Z_2, α and β are arbitrary complex numbers and the only restriction on these is the normalization condition of the superposed coherent states. We conclude that simultaneous Hong-Mandel's higher-order squeezing of both quadrature components with equal minimum higher-order fluctuations occurs for an infinite number of combinations of parameters Z_1 , Z_2 , α , β and θ . Variations of higher-order fluctuations with intensity parameter have also been discussed.

KEYWORDS: Non-Classical States, Squeezing, Hong-Mandel's Squeezing, Displacement Operator, Phase Shifting Operator

States of light, whose properties cannot be explained on the basis of classical theory, are called nonclassical states (Walls, 1983; Loudon, 1987; Dodonov, 2002). The non-classical nature of a quantum state can be manifested in different ways like antibunching, sub-Poissonian photon statistics and various kinds of squeezing etc. Earlier study of such non-classical effects was largely in academic interest but now their applications in quantum information theory such as communication, quantum teleportation, dense coding and quantum cryptography are well realized.

Squeezing, a well-known non-classical effect, has been generalized to case of several variables (Hong et. al., 1985; Hillery, 1987; Zhang et. al., 1990). Hong and Mandel (Hong et. al., 1985) introduced the concept of higher-order squeezing by considering the $2n^{th}$ order moments of the quadrature component and defined a state to be $2n^{th}$ order squeezed if the expectation value of the $2n^{th}$ power of the difference between a field quadrature and its average value is less than what it would be in a coherent state. According to Hong-Mandel's definition, a state $|\psi\rangle$ is said to be $2n^{th}$ -order squeezed for the operator,

$$X_{\theta} = X_1 \cos\theta + X_2 \sin\theta \qquad (1)$$

if the $2n^{th}$ -order moment of X_{θ} ,

$$\langle \Psi | (\Delta X_{\theta})^{2n} | \Psi \rangle < 2^{-2n} (2n-1)!!,$$
 (2)

where Hermitian operators $X_{1,2}$ are defined by $X_1 + iX_2 = a$, a is the annihilation operator, θ is an arbitrary angle, $\Delta X_{\theta} = X_{\theta} - \langle \psi | X_{\theta} | \psi \rangle$ and (2n-1)!! is product of factors, starting with (2n-1) and decreasing in steps of 2 and ending

¹Corresponding author

at 1. Note that the right hand side in inequality (Eq. (2)) is the value of left hand side for coherent state. Hong-Mandel's higher-order squeezing is quite distinct from ordinary squeezing because such squeezing does not require that the uncertainty product be a minimum and therefore both quadrature components of the field can have higher-order squeezing simultaneously (Lynch, 1986; Lynch, 1994; Kumar et. al., 2013). In other words, states exist for which product of higher-order fluctuations of both quadrature takes a value less than that for a coherent state.

A coherent state does not exhibit any non-classical effect but superposition of coherent states exhibit several non-classical effects (Prakash et. al., 2008; 2011). Jackiw state, a superposition of coherent state $|\alpha\rangle$ and vacuum state $|0\rangle$, exhibits (Lynch, 1986) fourth-order squeezing in the two quadratures. Lynch studied (Lynch, 1994) simultaneous fourth-order squeezing of both quadrature components in orthogonal even coherent state, a superposition of, $|\alpha\rangle$, $|-\alpha\rangle$, $|i\alpha\rangle$ and $|-i\alpha\rangle$ and reported simultaneous fourth-order squeezing of both quadratures with equal minimum value 0.1746 of fourth-order fluctuations. Recently we generalized (Kumar et. al., 2013) the results of Lynch (Lynch, 1994) for higher-order squeezing. Prakash et. al. (Prakash et. al., 2007) studied simultaneous fourth-order squeezing in superposition of two coherent states. In the present paper we study simultaneous occurrence of Hong-Mandel's 2nth-order squeezing of both quadrature components in the most general superposition state,

$$|\psi\rangle = Z_1 |\alpha\rangle + Z_2 |\beta\rangle \tag{3}$$

of two coherent states and . Here, complex numbers Z_1 , Z_2 , α and β are all-arbitrary and the only restriction on these is normalization condition of the superposed state

HIGHER-ORDER MOMENTS OF X_{Θ} in superrosed coherent states $\left|\psi\right\rangle$

A single mode coherent state $|\alpha\rangle$ defined by a $|\alpha\rangle = \alpha |\alpha\rangle$ can be written as

$$|\alpha\rangle = \exp(-\frac{1}{2}|\alpha|^2)\sum_{n=0}^{\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle = D(\alpha)|0\rangle \quad (4)$$

where $|n\rangle$ the occupation is number and D (α) = exp ($\alpha a^+ - \alpha * a$) is the displacement operator. Using the relation, D⁺(α) a D (α) = a+ α , we have

$$\left\langle \boldsymbol{\psi}' \left| (\Delta \mathbf{X}_{\boldsymbol{\theta}, | \boldsymbol{\psi}'})^{2n} \right| \boldsymbol{\psi}' \right\rangle = \left\langle \boldsymbol{\psi} \left| (\Delta \mathbf{X}_{\boldsymbol{\theta}, | \boldsymbol{\psi}'})^{2n} \right| \boldsymbol{\psi} \right\rangle$$

$$\text{ where, } \Delta \mathbf{X}_{\boldsymbol{\theta}, | \boldsymbol{\psi} \rangle} = \mathbf{X}_{\boldsymbol{\theta}} - \left\langle \boldsymbol{\psi} \right| \mathbf{X}_{\boldsymbol{\theta}} | \boldsymbol{\psi} \rangle \equiv \mathbf{D}(\boldsymbol{\alpha}) | \boldsymbol{\psi} \rangle ,$$

and $\Delta X_{\theta,|\psi\rangle} = X_{\theta} - \left\langle \psi' \left| X_{\theta} \right| \psi' \right\rangle$ From Eq. (5)

we conclude that the Hong-Mandel's $2n^{th}$ -order squeezing in any state $|\Psi\rangle$ is not affected by operation of the displacement operator. This observation and relation,

$$D(\alpha) D(\beta) = \exp\left[\frac{1}{2}(\alpha\beta^* - \beta\alpha^*)\right] D(\alpha + \beta), \qquad (6)$$

suggests that we can simplify the problem by writing the superposed coherent state $|\Psi\rangle$ as

$$|\psi\rangle = D(\beta)|\psi_1\rangle; |\psi_1\rangle = K[|xe^{i\phi}\rangle + re^{i\xi}|0\rangle], \quad (7)$$

where,
$$\operatorname{re}^{i\xi} = \frac{Z_2}{Z_1} \exp[\frac{1}{2}(\alpha * \beta - \alpha \beta *)]$$
 and

 $\begin{array}{l} xe^{i\varphi}=(\alpha-\beta) \quad \mbox{Since } e^{i\theta N}ae^{-i\theta N}=ae^{-i\theta}; N=a^{+}a, \\ we can further write the state \quad \left|\psi\right\rangle as \end{array}$

$$|\psi_{1}\rangle = e^{i\phi N}|\psi_{2}\rangle; \quad |\psi_{2}\rangle = K[|x\rangle + re^{i\xi}|0\rangle]$$
(8)

Now since

$$\langle \Psi | (\Delta X_{\theta})^{2n} | \Psi \rangle = \langle \Psi_1 | (\Delta X_{\theta | \Psi_1})^{2n} | \Psi_1 \rangle, \quad (9)$$

and also,

$$\left\langle \Psi_{1} \left| \left(\Delta X_{\theta, |\Psi_{1}\rangle} \right)^{2n} \right| \Psi_{1} \right\rangle = \left\langle \Psi_{2} \left| \left(\Delta X_{\delta, |\Psi_{2}\rangle} \right)^{2n} \right| \Psi_{2} \right\rangle$$
(10)

 $\delta = (\theta - \phi)$, therefore for studying maximum simultaneous Hong-Mandel's $2n^{th}$ -order squeezing in both

quadrature components with equal 2nth-order fluctuations in the superposed state $|\Psi\rangle$, we minimize $S^{(2n)} \equiv \langle \psi_2 | (\Delta X_{\delta, \psi_2})^{2n} | \psi_2 \rangle$ with parameters δ, x, r and ϕ . Now we have

$$\left\langle \Psi_{2} \left| (ae^{-i\delta})^{n} \right| \Psi_{2} \right\rangle = K^{2} x^{n} [e^{-in\delta} + re^{-\frac{x^{2}}{2}} e^{-i(\delta+n\delta)}] \quad (11)$$

and

$$\left\langle \Psi_{2} \left| (a^{+}e^{i\delta})^{m} (ae^{-i\delta})^{n} \right| \Psi_{2} \right\rangle = K^{2} x^{(m+n)} e^{-i(n-m)\delta}$$
(12)

It is easier to study higher-order moment in the state $|\Psi_2\rangle$ that to study higher-order moment in the state $|\Psi\rangle$ For examples, we calculate fourth-order moment and sixth-order moment of X_δ in the state $|\Psi_2\rangle$ a n d $\,$ st u d y $\,$ the simultaneous occurrence of these squeezing effects in the superposed coherent state $|\Psi\rangle$. We finally get fourth-order moment and sixth-order moment of X_δ in the superposed state $|\Psi_2\rangle$ respectively,

$$\langle (\Delta X_{\delta})^4 \rangle = \langle : (\Delta X_{\delta})^4 : \rangle + \frac{3}{2} \langle : (\Delta X_{\delta})^2 : \rangle + \frac{3}{16}$$
 (13)

$$\left\langle (\Delta X_{\delta})^{6} \right\rangle = \left\langle : (\Delta X_{\delta})^{6} : \right\rangle + \frac{15}{4} \left\langle : (\Delta X_{\delta})^{4} : \right\rangle + \frac{45}{16} \left\langle : (\Delta X_{\delta})^{2} : \right\rangle + \frac{15}{64}$$
(14)

Here for any operator X,: X: is its normal form, and

$$\langle : \mathbf{X}_{\delta}^{2} : \rangle = \frac{1}{2} [\operatorname{Re} \{ \langle \mathbf{a}^{2} \rangle \mathbf{e}^{2i\delta} \} + \langle \mathbf{a}^{+} \mathbf{a} \rangle]$$
$$\langle : \mathbf{X}_{\delta}^{3} : \rangle = \frac{1}{4} [\operatorname{Re} \{ \langle \mathbf{a}^{3} \rangle \mathbf{e}^{3i\delta} \} + 3 \operatorname{Re} \{ \langle \mathbf{a}^{+} \mathbf{a}^{2} \rangle \mathbf{e}^{i\delta} \}]$$
(15)
$$\langle : \mathbf{X}_{\delta}^{4} : \rangle = \frac{1}{8} [\operatorname{Re} \{ \langle \mathbf{a}^{4} \rangle \mathbf{e}^{-4i\delta} \} + 4 \operatorname{Re} \{ \langle \mathbf{a}^{+} \mathbf{a}^{3} \rangle \mathbf{e}^{-2i\delta} \} + 3 \langle \mathbf{a}^{+2} \mathbf{a}^{2} \rangle],$$
(16)

$$\langle : \mathbf{X}_{\delta}^{5} : \rangle = \frac{1}{16} [\operatorname{Re} \{ \langle \mathbf{a}^{5} \rangle \mathbf{e}^{-5i\delta} \} + 5 \operatorname{Re} \\ \{ \langle \mathbf{a}^{+} \mathbf{a}^{4} \rangle \mathbf{e}^{-3i\delta} \} + 10 \operatorname{Re} \{ \langle \mathbf{a}^{+2} \mathbf{a}^{3} \rangle \mathbf{e}^{-i\delta} \}],$$
(17)

$$\langle : X_{\delta}^{6} : \rangle = \frac{1}{32} [\operatorname{Re} \{ \langle a^{6} \rangle e^{-6i\delta} \} + 15 \operatorname{Re} \{ \langle a^{+2}a^{4} \rangle e^{-2i\delta} \} + 6 \operatorname{Re} \{ \langle a^{+}a^{5} \rangle e^{-4i\delta} \} + 10 \langle a^{+3}a^{3} \rangle]$$
(18)

$$\langle : (\Delta X_{\delta})^2 : \rangle = \langle : X_{\delta}^2 : \rangle - \langle : X_{\delta} : \rangle^2$$
 (19)

Indian J.Sci.Res. 7 (2): 59-62, 2017

$$\langle : (\Delta X_{\delta})^{4} : \rangle = \langle : X_{\delta}^{4} : \rangle + 6 \langle : X_{\delta}^{2} : \rangle$$

$$\langle : X_{\delta} : \rangle^{2} - 3 \langle : X_{\delta}^{4} : \rangle - 4 \langle : X_{\delta}^{3} : \rangle \langle : X_{\delta} : \rangle$$

$$(20)$$

$$\langle : (\Delta X_{\delta})^{6} : \rangle = \langle : X_{\delta}^{6} : \rangle - 6 \langle : X_{\delta}^{5} : \rangle \langle : X_{\delta} : \rangle$$

$$+ 15 \langle : X_{\delta}^{4} : \rangle \langle : X_{\delta} : \rangle^{2} + 15 \langle : X_{\delta}^{2} : \rangle \langle : X_{\delta} : \rangle^{4}$$

$$and \qquad -20 \langle : X_{\delta}^{3} : \rangle \langle : X_{\delta} : \rangle^{3} - 5 \langle : X_{\delta} : \rangle^{6} \qquad (21)$$

RESULTS

Using computer programming, we get minimum values 0.1840 of $S^{(4)} \equiv \langle \Psi_2 | (\Delta X_{\delta, \Psi_2})^4 | \Psi_2 \rangle$ and $S^{(0)} \equiv \langle \Psi_2 | (\Delta X_{\delta, \Psi_2})^6 | \Psi_2 \rangle$ 0.2197 of with $\delta = \pm \pi / 4$ at x = 1.55, $\xi \equiv 0$ and r = 0.038. Therefore, we finally conclude in terms of the parameters Z1, Z2, α , β and θ considered originally, that maximum simultaneous Hong-Mandel's fourth-order squeezing and Hong-Mandel's sixth-order squeezing in both quadrature components in the state $|\Psi\rangle$ occurs with equal minimum value 0.1840 and 0.2197 respectively for infinite number of combinations with $\alpha - \beta = 1.55 \exp[i(\theta \pm \frac{\pi}{4})]$, $\frac{Z_2}{Z_1} = 0.038 \exp[\frac{1}{2}(\alpha\beta^* - \alpha^*\beta)]$ and $\theta = \pm \frac{\pi}{4} + \arg(\alpha - \beta)$. Variations of fourth-order squeezing and sixth-order squeezing with parameter x at $\delta = \pm \frac{\pi}{4}$, $\xi = 0$ and r = 0.038 have been shown in Figure 1 and Figure 2 respectively.

Figure 1 : Variation of $S^{(4)} \equiv \langle \psi_2 | (\Delta X_{\delta, |\psi_2})^4 | \psi_2 \rangle$ with x at $\delta = \pm \frac{\pi}{4}$, $\xi = 0$ and r = 0.038

ACKNOWLEDGEMENTS

We would like to thank Prof. H. Prakash, Prof. R. Prakash, University of Allahabad, Allahabad, India and Dr. R. Kumar, Udai Pratap Autonomous College, Varanasi, India for stimulating discussions.

REFERENCES

- C. K. Hong, L. Mandel., 1985. Higher-order squeezing of a quantum field, Phys. Rev. Lett. **54**: 323-325.
- D. F. Walls., 1983. Squeezed states of light, Nature **306**: 141-146.
- H. Prakash and P. Kumar., 2007. Simultaneous fourth-order squeezing of both quadrature components in superposition of two coherent states, Abstract book Seventh DAE-BRNS National Laser Symposium, 241-242.
- H. Prakash, P. Kumar., 2008. Amplitude-squared squeezing in superposed coherent states, Eur. Phys. J. D **46**: 359-363.
- H. Prakash, R. Kumar, P. Kumar., 2011. Higher-order HongMandel's squeezing in superposed coherent states, Opt. Commun. 284: 289-293.
- M. Hillery., 1987. Amplitude-squared squeezing of the electromagnetic field, Phys. Rev. A 36: 3796-3802.

KUMAR : SIMULTANEOUS HONG-MANDEL'S HIGHER-ORDER SQUEEZING...

- P. Kumar and R. Kumar., 2013. Simultaneous higher-order Hong and Mandel's squeezing of both quadrature components in orthogonal even coherent state, Optik 124: 2229-2233.
- R. Loudon, P.L. Knight., 1987. Squeezed light, J. Mod. Opt. **34**: 709-759.
- R. Lynch., 1986. Jackiw state and higher-order squeezing of the electromagnetic field, Phys. Rev. A 33: 4431.
- R. Lynch., 1994. Simultaneous fourth-order squeezing of both quadrature components, Phys. Rev. A 49: 2800-2805.
- V.V. Dodonov., 2002. Non-classical states in quantum optics: a 'squeezed' review of the first 75 years, J. Opt. B 4: R1-R33.
- Z.M. Zhang, L. Xu, J.L. Chai, F.L. Li., 1990. A new kind of higher-order squeezing of radiation field, Phys. Lett. A 150: 27-30.