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ABSTRACT
We study simultaneous Hong-Mandel's higher-order squeezing of the two quadrature components by considering
Hermitian operator, X,= X, cos0 + X, sin0, in the most general superposition state |/} = 7, c}+ 2.|B). of two coherent states |c; and (.

Here, Hermitian operators X, , are defined by X, +iX, = a, a is the annihilation operator, is an arbitrary angle, Z,, Z,, a and p are
arbitrary complex numbers and the only restriction on these is the normalization condition of the superposed coherent states. We
conclude that simultaneous Hong-Mandel's higher-order squeezing of both quadrature components with equal minimum higher-
order fluctuations occurs for an infinite number of combinations of parameters Z, Z,, o, p and 0. Variations of higher-order

fluctuations with intensity parameter have also been discussed.
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States of light, whose properties cannot be
explained on the basis of classical theory, are called non-
classical states (Walls, 1983; Loudon, 1987; Dodonov,
2002). The non-classical nature of a quantum state can be
manifested in different ways like antibunching, sub-
Poissonian photon statistics and various kinds of squeezing
etc. Earlier study of such non-classical effects was largely
in academic interest but now their applications in quantum
information theory such as communication, quantum
teleportation, dense coding and quantum cryptography are
well realized.

Squeezing, a well-known non-classical effect, has
been generalized to case of several variables (Hong et. al.,
1985; Hillery, 1987; Zhang et. al., 1990). Hong and Mandel
(Hong et. al., 1985) introduced the concept of higher-order
squeezing by considering the 2n" order moments of the
quadrature component and defined a state to be 2n" order
squeezed if the expectation value of the 2n" power of the
difference between a field quadrature and its average value
is less than what it would be in a coherent state. According
to Hong-Mandel's definition, a state |l|!> is said to be 2n"-
order squeezed for the operator,

X,=X,cosf+ X, sin6 )
ifthe 2n"-order moment of X,,
(\]! \(AXB)Z"NO<2_3"(2n—1)!!, 2)
where Hermitian operators X, , are defined by X, +iX,=a, a
is the annihilation operator, 6 is an arbitrary angle,
AX, =X, —(y[X,/y) and (2n-1)!! is product of factors,
starting with (2n-1) and decreasing in steps of 2 and ending
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at 1. Note that the right hand side in inequality (Eq. (2)) is the
value of left hand side for coherent state. Hong-Mandel's
higher-order squeezing is quite distinct from ordinary
squeezing because such squeezing does not require that the
uncertainty product be a minimum and therefore both
quadrature components of the field can have higher-order
squeezing simultaneously (Lynch, 1986; Lynch, 1994;
Kumar et. al., 2013). In other words, states exist for which
product of higher-order fluctuations of both quadrarture
takes a value less than that for a coherent state.

A coherent state does not exhibit any non-classical
effect but superposition of coherent states exhibit several
non-classical effects (Prakash et. al., 2008; 2011). Jackiw
state, a superposition of coherent state |ct} and vacuum
state ‘0> , exhibits (Lynch, 1986) fourth-order squeezing in
1994)

simultaneous fourth-order squeezing of both quadrature

the two quadratures. Lynch studied (Lynch,

components in orthogonal even coherent state, a
superpositionof, |et),|—ct),|ict) and |—ict) andreported
simultaneous fourth-order squeezing of both quadratures
with equal minimum value 0.1746 of fourth-order
fluctuations. Recently we generalized (Kumar et. al., 2013)
the results of Lynch (Lynch, 1994) for higher-order
squeezing. Prakash et. al. (Prakash et. al., 2007) studied
simultaneous fourth-order squeezing in superposition of
two coherent states. In the present paper we study
simultaneous occurrence of Hong-Mandel's 2n"-order
squeezing of both quadrature components in the most

general superposition state,
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lw)=2Z]o}+Z,[B) 3)
of two coherent states and . Here, complex numbers Z,, Z,,
o and f are all-arbitrary and the only restriction on these is
normalization condition of the superposed state
HIGHER-ORDER MOMENTS OF X, IN SUPEPROS-
ED COHERENT STATES |W)

A single mode coherent state ‘OQ defined by a

| O(.> = 0&‘ Oﬁ) can be written as

oy = Emp(—*|0t| )Z

11[)

y=D(@)|0) (4

where |n> the occupation is number and D (a) =
exp (na - o * a) is the displacement operator. Using the

relation, D' (o) a D (o) = a+a, we have
<‘U ‘(AXH \]I‘:: B > <l|] ‘( ] ‘\II i N "lj> (5)

where, AXB_N;} =Xo- (W |XG“'II> = D(Ot)‘ W> ’

and AXy ), =X, —<ll" ‘Xe‘w‘> FromEq. (5)
we conclude that the Hong-Mandel's 2n"-order
squeezing in any state ‘W> is not affected by operation of
the displacement operator. This observation and relation,
D(0) D (B)=exp [/2(af* - po*)] D (a+p),  (6)
suggests that we can simplify the problem by

writing the superposed coherent state ‘ 1|I> as

W) =D i) =K xe®)+ref0)] )
i _ 2 1 & *
where, 1c”=—=2cexp[-(a*B-af*)] and
z,
xc® =(0t—P) Since ¢Mac ™ =ac N =ac ¥:N=a'a,

we can further write the state ‘IU) as

IMF@WMHMFKWHMWH(&

Now since

(WlAaX) ™ |w)={w[(ax, ko)
and also,
<Wl |(AX0‘|1|11})ZH|"|“1> ( (AXSMJ ._>
(10)
0=(0—¢), therefore for studying maximum

simultaneous Hong-Mandel's 2n"-order squeezing in both

60

quadrature components with equal 2n"-order fluctuations in

the superposed state | \|I>, weminimize §™ =(y,

withparameters §, x, rand . Now we have

(llfl |(ae—ié)n llf2> 7 n[e—mb +re e
and

(W) ey ) = KO

It is easier to study higher-order moment in the

—i(0+nd) ]

(11)

state ‘\W ) that to study higher-order moment in the state v
For examples, we calculate fourth-order moment and sixth-
order moment of X in the state ‘Wz) and study the
simultaneous occurrence of these squeezing effects in the
superposed coherent state |W> . We finally get fourth-order
moment and sixth-order moment of X; in the superposed
state “l’z) respectively,

{(AX,)*) =(:(AX,)* :)+%(: (AX;) :)+% (13)

(A%, )= (A%, )+ 2 (4%

45 15
i T< (AX,)" )+ 64 (14

Here for any operator X,: X : is its normal form, and

(X ) = 2 Reffa? e} +{a"a))
1 3i i
(1 X55)= 3 [Ref{a’ je™} +3Rei{a’a’ )] (15)
<: X :> = %[Re{<a4>e'4iﬁ}+4Re{<a+a3>e'm} +3<a+2a2>],
(16)
X = %[Re{(ai>eiiﬁ}+5 Re
{<a+a > '3‘°}+10Re{< ) #L,
(17)

<: b4 :>=

+6Re {(a‘aS )e_m}—l—] 0<a‘1a?’ )]

%[Re {<aﬁ>e’6ia} +15Re {<a‘3a4>e72ia}

(18)
<: (A){a)2 :>= <: X§ :> —<: X; )2 (19)
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<: (AX;) :> = <: X :> +6<: X :>

(XY - 3<: X :> - 4<: X :>(: X; o)

(20)
<: (AX;)* :> :<:X§ :) —6<:X§5 :><: X; :>
+15<: X; :><: 3 :>2 +15<: X; :><: X, :>4
and —20(: X :><3X5 :>3 —5<: X; :>6 Q1)

RESULTS

Using computer programming, we get minimum
values 0.1840 of S ={w[(A%,, Y|ur) and S ={w,[(AX;, ) )
0.2197 of withd=+n/4 atx=1.55,&=0andr=0.038.
Therefore, we finally conclude in terms of the parameters

Z1, 72, a, B and 8 considered originally, that maximum
simultaneous Hong-Mandel's fourth-order squeezing and
Hong-Mandel's sixth-order squeezing in both quadrature
components in the state ‘W) occurs with equal minimum
value 0.1840 and 0.2197 respectively for infinite number of
combinations with e—f=1.55exp[i(8 ig)], ; = 0038 exp[4 (0 — o]

and 0== Z +arg{o, - [3). Variations of fourth-order squeezing
and sixth-order squeezing with parameterx at §- tz ,E=0

and r = 0.038 have been shown in Figure 1 and Figure 2

respectively.
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Figure 1 : Variation of '’ = <\|J2 (AX )y, )4‘\412)

with x at 5:%‘ ,€=0 andr=0.038
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Figure 2 : Variation of B = <W1 ‘(AX&M}) %}

withxatazig , E=0 and r=0.038
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