NULL CURRICULUM REVIEW IN UNIVERSITY EDUCATION SYSTEM IN ISLAMIC REPUBLIC OF IRAN

YOUSEF ADIBa, SAJJAD POURBAGHBANb, MARZIEH SARDARIC, SARA SHAHABId AND LEILA RAD SOLEYMANIE

aAssociate Professor of Educational Sciences Group, University of Tabriz
bMS Student of Curriculum, University of Tabriz
cPhD Student of Curriculum, University of Tabriz

dCorresponding author

ABSTRACT

Null aspect of the curriculum or lesson plan is evident in the curriculum. null the possibility of curricula to fit the way the comparison is reasonable. These defects can be compared favorably with the curriculum or other obvious location or time is reached. Given this, it is necessary to compare the curriculum as a whole is composed of parts can be followed in all components. Eisner courses include knowledge and values that are null the training centers to train them not to take action. However that may be higher than the value and importance of being taught by educational institutions. In this study, we followed null aspects of the curriculum of education courses in the university education system in Islamic Republic of Iran.

KEYWORDS: Null Curriculum, The University Education System, Islamic Republic of Iran

The curriculum states the objectives, content and evaluation courses. In the meantime, what should be in the curriculum, and the reasons are not clear, the program is called absent. Curriculum null the first time the term was introduced by Eisner. According to Eisner(1997), neglected curriculum program that must be learned but not taught. In other words, the curriculum, the gap between the desired state and the status quo. Determine and identify neglected in educational curriculum will be challenging because the subject matter is complex to determine the optimal situation. Curriculum in the education system of this species can be recognized to be crossed. In this method, first draw the desired position, and then specify the content requirements. That part of the substantive requirements of the explicit curriculum, absent, absent form the curriculum. Determine the appropriate status for at least two different approaches can be achieved.

First approach, analytic approach to performance evaluation of optimal activity, the content requirements specified. In this approach, a process can be expected pathology and assessment of the existing education system were explained and compared it with the status quo restored curriculum payment(Shugrinsky, 2004).

The second approach, a comparative study of the curriculum in educational curricula and standards of the developed countries of the world. In this approach it is important that the huge achievements of other researchers and experts in developing appropriate curricula, teaching aids and neglected sections reveals the program with more confidence. Obviously, this approach challenges facing the possibility of ignoring the socio-cultural needs of indigenous technological and scientific needs. Therefore, in this approach, the summary are taken seriously and carefully consider the environmental conditions affecting program.

What null curriculum in university education system

The common perception of the curriculum, it usually gets one dimensional phenomenon that can only exist explicitly. However, the curriculum can be defined in different ways, which constitutes one of the most null in the curriculum. Lower educational thinkers of our country are familiar with the concept, and this is why it is necessary to address the areas identified so far null curricula, research has been done in the country (Mehrmohmmadi, 2004)

According to Eisner, null curriculum focuses on issues that have been removed from the curriculum explicit educational system (Eisner, 1994).

To address this lack of attention of planners crossed the educational system of cronism, aging and inefficient relieve. The message curriculum neglected for curriculum development, it is a conscious decision with regard to the needs and necessities of the present and future social and personal adopt (Mehrmohmmadi, 2004).

One of the issues in the areas of curriculum specialists in this field has always been our focus,
curriculum design and assessment of a comprehensive definition precludes it. Klein is one of the most comprehensive plans proposed scheme. Klein's definition of the seven levels of the curriculum, different layers of the system are introduced in complex (1991). Seven levels of project-based curriculum is as follows Klein:

1. Academic Curriculum: The curriculum, academic experts Expert opinion is coming from.
2. Community curriculum: The curriculum focuses on the views of the social elite, but not necessarily an expert on the impact of the curriculum.
3. Formal curriculum: the curriculum, a program developed by the specialists of the Ministry of Education approved engineering curriculum is in place.
4. The local university curriculum: the level of effort that is represented in every college locally approved curriculum change takes place and makes.
5. Hidden Curriculum: The hidden curriculum refers to the attitudes of academics towards formal curriculum has formally notified the Ministry of Science and an intermission, it applies the formal curriculum.
6. Curriculum implemented: the level of programs, strategies and programs that can be realistically implemented by teachers in academic classes.
7. Experiential Curriculum: This curriculum involves students learning and their attitude (Mosapuor, 2008).

One of the reasons for this mismatch between curriculum is absent from the formal curriculum so invisible, influence. Since it is important that the representative is absent from the curriculum issues that must be learned and had been removed from the program because they are not taught. This phenomenon is manifested as deficiencies in training, knowledge, attitude and skills of learners in the future.

Another question about the proposed curriculum is nulled, it is directed to the surface. If the seven areas outlined in the previous section, three formal curriculum, curriculum implementation and curriculum development experience as we consider the most important levels, At each level, corresponding to well defined curriculum will be nulled (Mosapuor, 2008).

1. Curriculum nulled in formal curriculum: The curriculum of study null the provisions of the official curriculum of the educational system and compare it to the desired position is obtained request of technological knowledge society. For example, a review of the curriculum in computer engineering education in the English language, lack of compliance with the requirements of this application is true and fundamental computer engineering. The general lesson in formal curriculum to suit the social needs of such students is not set.

2. Nulled in the curriculum implemented curriculum at this level of the program, despite the presence of some components in the formal curriculum, are omitted. This eliminated for various reasons is directed by the teacher. The reasons include lack of a master of debate, no discussion of the importance of supervision, time constraints or limitations of hardware platform.

3. Curriculum nulled experiential curriculum: Another place where the curriculum is nulled, curriculum experienced by students, There may be issues with the official curriculum and implemented curriculum, teaching methods, inappropriate or non-compliance with the requirements of the students. The final step in the experiential curriculum may not be considered as a component nulled in this area (Wilson, 2005).

Identifying each of these curricula will be null so that each of these sectors, the analysis desired properties are achieved by the presence or absence of expected them to be examined. Missing parts, forming the curriculum will be ignored.

Why null curriculum development in university education system

Null curriculum development within the education system can occur several reasons. One of the major causes absent from the curriculum, particularly at the level of formal educational curricula, lack of appropriate feedback mechanisms between participants with practical field training program. Obviously, no matter how scientific domains are affected by severe environmental changes that may need further revision and shorter periods. Should be revised. Education planners should be aware of the importance of self-efficacy in the evaluation of these courses are required to continually upgrade the flagship know. On the other hand the appropriate mechanisms for feedback transmission efficiency of practical training activities occur, Designers are able to contribute to its well-known strengths and
weaknesses of the program and to modify and upgrade it to take.

Unfortunately, due to the generally applicable governmental structures Curriculum subjects and practical activities in the field of performance evaluation is done in two separate corporate subsidiaries There is no necessary relationship and interaction between these two.

If we consider the fact that a large organization Lack of collaboration between the two institutions known for damages resulting from the theory of the organization. This damage than mechanical structure and task-oriented organizations than organizations with an organic structure and is characterized by functionalism. Organizations primarily industrial structure, flexibility and dynamism required to deal with environmental changes, not changes in the environment and their productivity decreases. But organizations with an organic structure with intelligent system components, options, and most importantly, interaction and motivation for looking at the overall performance of its activities are regulated(Daid,1995).

Functional analysis of educational activities (focus on communication and social science)

Functional analysis, functional activities, educational process and examines its implications. In general, mankind always has limitations that affect its recognition and they are distorted. However, this limitation is caught in the trap of any human understanding and personality, emotions and desires of people looking at the role they play in bold. One way close to reality and truth of things, seeing things from different sides and different perspectives. The different perspectives and different aspects can be opened in the relationship between individuals and the knowledge attaining certain guarantee (sajjadieh,2008).

On the other hand, any activity can be considered a combination of eight other activities, among these four activities are defined infrastructure or the need to determine the requirements needed to provide solutions tailored to the requirements of the evaluation results. In each of these activities themselves, as the level of activity, specific capabilities will be required.

Eggleston(1995)considers the competencies include:

1) divergent thinking
2) appropriate data collection
3) the interaction of ideas with colleagues
4) Application of Knowledge
5) mental skills and iodine
6) Social Skills.

As we shall see, there are two basic capabilities of the successful activities comprise communication capabilities. Inclusive, without having the ability to interact with colleagues and get their ideas, their opinions and their ability to communicate with normal people in society actions to the right will not be able.

During all four phases of the activities need to have a strong community of technical communication capabilities. Need or problem definition stage, inclusive require appropriate and effective interaction with the customer's exact requirements and receive Him.At this point, communication skills, social, writing, charting, listening, speaking and ... is more important than technical communication. The process of determining the requirements, students must be able to define need or problem from various angles to examine the implications and requirements to obtain it.At this stage, as the interaction between them is greater, or more dimensions of the problem needs to be clear and precise requirements specified Consequently, the safer the product is produced. They have also participated in stage solution, the solution will benefit from greater stability. Review and evaluation of results will ensure the stability of the solution.

Alternatively effectiveness analysis activities, due to the raised areas of the domain learning. A macro can be categorized into three groups in this area of knowledge, skills and attitudes needed to be classified. Dobearty and colleagues believe in the science, methods of communication, the skills, interaction and exchange of ideas, skills and attitude, belief in community work, social responsibility, flexibility and sensitivity to others, including the major components(Dobarty,1995).

Comparative Analysis of Instruction system (focus on communication and social science)

Criteria raised by a comparative analysis of education in science and technology education also null了一些 of the ingredients of the educational system and curricula neglected to show it. U.S. technology strategic plan document standards to twenty intends to identify the technological components of scientific literacy. These standards in five categories "nature of science ", " science and technology and society ", " designed ", " scientific,
technological skills required for the world " and " developed world " are classified . Meanwhile, Prime Standard, considered one of the standards, recognizing the correlation between different branches and about the impact of technology on each other. One result of this understanding, facilitate communication between students in projects and tasks will be multidimensional.

The International Agreement on Accreditation in Washington (2007),One of the main factors expected to communicate effectively with colleagues, students and other community members. Knows. In this section, students are able to deal with an emphasis on individual and group projects in the ability to communicate effectively with colleagues, emphasizes human society and the natural environment. Components developed to focus on effective communication skills will result in the following:

1) Ability to prepare reports in clear, understandable, smooth on various scientific projects.

2) the ability to express and implement seminars transparent, clear, precise and comprehensive scientific achievements and issues.

3) the ability to conduct scientific-technical demands and commands so transparent, accurate and complete to colleagues.

Given these skills, demonstrates the importance of social relationships in the academic environment and its role in promoting scientific projects are rejected.

The Barnett study on higher education in England, the paradigm shift occurring in scientific domains indicate a relational model and believes disciplinary paradigm has changed the paradigm of strategic (Barnett,1997)

Paradigm shift means that the basis of scientific areas related to higher education in recent years, instead of near the Strand, near was strategic. This tendency makes it necessary to address factors related to social science. Because each strand of the specific terminology governance framework and common understanding, technical and scientific communication more easily done, but in a new , different disciplines to join together and this strategic reasons , because distinctions vocabulary and frameworks Understanding effective communication and engagement with challenging and requires students to be familiar with the concepts and ability to apply its rules considered more than ever said.

Null curriculum components in Communication Training

This study seeks to provide comprehensive and it is not an obstacle, it neglected to evaluate all aspects of the curriculum, it is followed by an explanation of its existence and how the some of the obvious examples is brought into the picture. Enabling students to develop their activities in the field of view can be divided into two parts: general and specific. Specialist sector, it is quite concerning technical capabilities of the field. This part has its own importance and need to be explored to any degree. But what was more important and widespread due to a higher proportion of this research project is part of the competencies required for instructional design that is shared between many disciplines and scientific activities. In this part of comparative functional analysis and scientific activities was also emphasized, is the ability to communicate effectively in social science. Establishing this relationship entails having the cognitive component, is more specific attitudes and skills covered will be issues in the curriculum of formal education have been forgotten.

Cognitive Requirements

Primarily due to the need for research and development centers and rapid response to the requirements of a dynamic learning environment, based on its ability to implement hierarchical structures and the division of labor does not exist. The diversity and complexity of their projects, such centers are required to implement the project structures or a combination of hierarchical structures and the project(Hatch,1997).In these structures, interactions and responses to those of a simple state of bilateral relations, common foreign and mixed and multiple becomes. In such centers, each person interacts with a considerable number of their classmates. These interact in various formats such as responsibility, accountability, and cooperation is carried out.

Because of the novelty of projects and the dynamics governing their space, this relationship does not have clear definitions, those tasks can not be properly defined and explained in a scientific project. Scientific and technical aspects of the unknown and unforeseen scientific and technical activities also prevented proper segregation of duties will be.
In such an esoteric space, lack of recognition of the inherent difficulties of governing such activities cause pessimism and scientific applications in an increasing trend of collaboration may lead to increased disagreement and divergence in the scientific goals. Important factor in their dissatisfaction in these environments to work in their mental background task oriented structures. In order to implement such systems is often the case in scientific activities.

Choice but to prevent this damage, mental preparation, and increased awareness of human relations model does not exist and this must be done effectively in training courses. This knowledge could form the theoretical and practical projects in class or during the instructor realized. The cognitive requirements are not limited to the above subject and encompasses a wide spectrum of knowledge. Knowledge of methods to interact with classmates ideas and scientific knowledge of human relations governing the structural organization of the project and a high level of adaptation to environment, learners and educational activities to help.

Attitude Requirements

There is no doubt that scientific activities, like any other human activity is not limited to the intellectual or cognitive terms. Other aspects of the human personality as well as the motivation and skills to play an important role in this regard. When these aspects are more significant role in the scientific and non-technical aspects should be considered.

First and foremost must be acknowledged in scientific activities as well as other human activities motivating factor in the effectiveness of the role plays. Despite the motivation for human activity is not only a driving force but as a compensator, can automatically compensate some shortcomings and deficiencies in other areas. Among the various factors in motivation, personality and motives of the fitness activities of the scientific activities are of a much higher priority. So that the major driving force behind most of the world's scientific and technological developments.

It is important to clarify the role of motivation in the field of scientific activities in terms of complexity and difficulty, among other activities considered to be compared with other occupational activities available in the. The competitive environment prevailing in the world of science and technology difficulties in creating new products put on the scientific activities of the field to the battlefield with the laws of nature and the idea of competing with thousands of competing makes. From this, it is necessary for the purposes of scientific curriculum and academic motivation as a significant increase in the present and in addition that it is defined procedures implemented in the evaluation system of to its share of carefully to Determination. Creativity and innovation, overcoming problems, solve mysteries and unknowns, won the competition for scientific and technical superiority, religious and national identity and independence of the media is increasing scientific and technical reasons.

Also important element of attitude and motivation in scientific, technological, belief in teamwork and responsibility of other team members. This motivation leads to the rule of thoroughness and scientific activities in space, achieving better results will be. Motivation, empathy with other students in the scientific activities of the challenges, difficulties will reduce the academic environment and a more pleasant environment for scientific activities of the human and will make.

Qualification Requirements

Commensurate with the complexity prevailing in scientific and technical communication, interpersonal, academic activities, it is evident that the actors in this field should be of an acceptable level of communication tools to convey scientific concepts have between each other. Since the communication is done both oral and written form, students should have acquired skills in verbal and written communication of scientific information to be compiled.

However, the compilation of scientific information as to the documentation of scientific activities comprise a significant portion of the more important. A student should be able to be the best possible results from studies, experiments, calculations, and other documentation of its activities in standard formats to record to allow use of other learners and they need people who subsequently can be created. Otherwise, the accumulation of knowledge is one of the fundamentals of science and technology have not provided adequate documentation of the activities carried out in vacuum, there is no choice but to repeat previous actions. While in junior high and high school educational program teaching students skills in writing essays breadwinner of the content of the educational curriculum at the University, in
spite of necessity, and students learn the skills fitness, program the current study does not exist.

Disabilities in the areas of oral communication skills in presentations in seminars, technical meetings, low productivity, chronic disagreements between managers and experts and professors, Poor listening skills and many similar examples of disorders that scientific productivity is reduced.

CONCLUSION

The present article was to investigate the causes of the identified curriculum and ignored it, focusing on the needs of the scientific community, curriculum corresponding to the neglected public education system and components should be to describe. In this regard, it was stated that the public education system should consider the needs of scientific activities, accelerating the world of science and indigenous people needs to be designed, In this way, designers need to consult the curriculum standards, criteria are developed countries and international scientific training documents.

One of the areas where the gap is defined so precisely testimonials and referrals, knowledge, attitude and skills of social scientific connections between the learners.

I have requirements from three perspectives: cognitive, attitude and skills of the discussion and the following results were obtained.

1) cognitive requirements
 - Awareness of appropriate patterns of human relations in the workplace.
 - Knowledge of methods interaction of ideas with colleagues.
 - Scientific knowledge about human relationships governing the combining organizations.

2) attitudes requirements
 - Motivation perseverance
 - Positive attitude towards teamwork
 - Creating a sense of social responsibility in front of others

 - Difficulties in developing a sense of empathy in academic activities

3) Skill Requirements
 - Oral presentation skills, accurate, and comprehensive mental science
 - Presentation skills in writing accurate and comprehensive mental science
 - Documentation skills Results based on existing standards
 - Skills, interaction of ideas with colleagues.

Therefore, it is suggested, these factors also put on public courses, academic courses, projects, assignments and practical training in the areas discussed in this course, to be considered by faculty.

REFERENCES

Miller, Jypy. 'Curriculum theory', translated Mhrmohamady, the publisher, Tehran, 1383.

Wilson, L.O. "What are the types of curriculum", WWW.uwsp.edu/education/Lwilson/currhc/curty p.htm2005.