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THERMAL STRESSES FIELD DUE TO A SYSTEM OF GRIFFITH CRACKS LYING AT THE
INTERFACE OF TWO BONDED DISSIMILAR MICROPOLAR ELASTIC HALF PLANES
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Department of Mathematics, Pioneer Mahila Mahavidlaya, Barabanki, U.P., India
ABSTRACT

In bonding two materials with different mechanical elastic properties, very often it is not possible to obtain a
homogeneous perfect bond due to the existence of entrapped imperfections as in the joints involving ceramics and metal used in
manufacturing electronic devices and variety of reinforced composites. The cavities and other imperfection with weak bond
strength existing on the interface usually have very sharp corners. For the purpose of analysis, these imperfections may all be
classified as singular surfaces across which displacement or stress vector suffer a discontinuity. These singularities correspond
regions of high stress in which fracture of material may occur. Many problems have been solved involving one or more cracks in an
infinite elastic medium. The solution is given in terms of a single Fredholm integral euqation then Lowengrub and Srivastava
treated in an infinite elastic strip containing a pair of equal size collinear cracks. They used a finite Hilbert transform technique
developed by Srivastava and Lowengrub, in order to reduce the problem to a Fredholm integral equation. The problem is reduced
to singular integral equations and the stress intensity factors, crack displacement and crack energies are then determined. The
stress and displacement field in the vicinity of a Griffith crack located at the interface of two bonded dissimilar elastic half planes
are determined. A systematic use of Fourier transforms reduces the problem to that of solving a set of simultaneous dual integral
equations which are equivalent to Riemann boundary value problem.

KEYWORDS: Simultanecous Dual and Triple Integral Equations, Riemann Boundary Value Problem Riemann Hilbert
Problem and Fredholm Integral Equation of Second Kind

The stress field in the vicinity of a pair of Griffith
cracks located at the interface of two bonded dissimilar
elastic half-planes is determined in (Srivastava et. al.,
2000) Fourier transform is employed in order to reduce the
problem to that of solving simultaneous set of triple
equations containing a trigonometric kernel.

In the linear theory of micropolar elasticity the
problem of Griffith crack in a transverse field of constant
uniaxial tension is studied in (Gerasoulis and Srivastav,
1980). The problem is reduced to three Fredholm integral
equations of the second kind which have the same kernel are
solved numerically. Another problem of a Griffith crack at
the interface of two bonded dissimilar micropolar elastic
half-planes is considered by (Green and Zerna, 1960). The
deformation in two half-planes is due to the application of
constant pressure to the faces of the crack. The analysis is
carried out by (Lowengrub and Srivastava, 1968) to a
system of simultaneous dual integral equations which are
further reduced to the system of Riemann-Hilbert problem.

The object of this chapter is to present a general
formulation when system of m Grifith cracks are presented
at the interface of two bonded dissimilar micropolar elastic
half-planes. The cracks are situated with respect to y-axis
taken perpendicular to the interface. The problem is first
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reduced to a system of simultaneous dual integral equations
which are further reduced to the solution of Riemann-
Hilbert problem. Further the expressions for evaluating the
stress intensity factors at the tip of cracks are derived. The
calculations have been done in case when constant
temperature is prescribed on crack surfaces.

FORMULATION OF THE PROBLEM

We shall study the distribution of thermal stress in
the vicinity of a system of a Griffith cracks located at the
interface of two bonded dissimilar micropolar elastic half
planes which is symmetrically situated with y-axis and
perpendicular to the interface. We assume that the two half-
planes y > 0 and y < 0 be occupied by elastic materials with
constant ; and k; respectively, p; denotes the rigidity
modulus and k; = 3-41; where n; denotes the poison ratio of
the two elastic materials. The cracks are gien by y = 0, a;< |
x|<b;, J=1,2,3...nwhere 0 <a;<b;<a,<b,....... a, M<
by

In case when a; = 0 then the number of cracks is
odd and m = 2n-1. If a;# 0, then the number of cracks is
even and hence m = 2n, in this case, the cracks are given by
y=0,-bi<x<b, < x| <b, J=1,2,3 ...... n.
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If we assume that the upper and lower surfaces of
the cracks are subjected to a prescribed pressure P(x) and
temperature T(x), we see that inside the crack area, the
following conditions are to be satisfied.

Gy (%, 01) =0y (x,0-)=-P(x), xe U (2.1)
Gy (X, 04) =0y (x,0)=0  ,xeU (2.2)
my (x,0)=myy (x,0-)=0 ,xeU  (2.3)
TxOH=T(x0-)=-Tx), xeU (2.4)

For the region of the interface not occupied by the

cracks, the following continuity conditions must be
satisfied:
u (x,0+)=u,(x,0-) ,xeU' (2.5)
uy, (x,0+)=u,(x,0-) ,xeU (2.6)
0 (x,0+)=0(x,0-) ,xeU 2.7
Oxy (X, 0 +) =0y (x,0-) ,xeU (2.8)
Gy (X,0+) =0y (x,0-) ,xeU (2.9)
myy (X, 0 +) =04y (X, 0 -) ,xeU' (2.10)
Tx 0+)=T(x,0-) ,xeU (2.11)
K| yoor =Koo| yeom .xeU (212)
Where U is the union of the cracks and U' its
complement on the x-axis, i.e., U :] E ) (aj, b)), U'=R' -

U, R' is the positive axis. The component of stress

displacement and micro rotation must vanis as ,/x2 + y?—
0. cf. p.29 (6) we take this condition as

uy, (x,0+)=0,/(1 —x),xe U

In order to simplify the calculations, we choose
P(x) to be an even function of x. Solution of the
displacement equations can be taken by using Fourier sine
and cosine transforms.

Fs[A; — PLE™'By + Q;Byy|e™™ — L3n,Cie™Y, y> 0
ux(éaY):
Fs[A; — P,&7'B; + Q;B,yle — L3n,Ce"Y, y <0

(2.13)
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F.[A; + Q;B; yle™ — 13EC,e™MY, y>0
uy(&,y)=
F.[A; + Q;Byyle™ + L3EC,eY, y<0 (2.149)
Fs[Bix e + Cie™ Y], y> 0
d(Ey)=

Fs[B,x e¥ + C,e™Y], y< 0 (2.15)

21O
FC I:a1(1+ 771)

Tx(&y)=

ol O
€ loz(a+n,)

e, £ X], y>0

e, £ x] ,y<0 (2.16)

Where

At 3y Q oMty 2 _ Vi
}‘i+2Hi‘ ! ki+2p.i' ! 2y

i

Vi

o ATQi=2

Here A; and p; are the classical Lames' constants
and v; is the micropolar modulii and Q; is the micropolar
poisson ration. The micropolar modulii v; and p; have the

dimensions of force and stress respectively, we may define
and internal characteristics length L; of the medium given

by
Vi
L = ’—
i ZHi

Now putting y = 0 in the equations (2.13 -2.15) we have

Oxy (%, 0 ) = F[2n, (—EA; + By +13E°C,); &> x] (2.17)

Oxy (%, 0-) = F[2p, (EA, + B, + 138°C,); £ ]

GYY (X7 0+) = Fc
[2n,{-€A; + (1 — Q)B, + L2En,C,} & x]
(2.18)

Indian J.Sci.Res. 10 (1): 65-78, 2019
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Oy (X, 0-) =
Fe [2u,{-€A; + (1 — Q)B, + 13&n,C,} &> x]

myy (x, 0 ) =F[-v1(B1E+ Cim,) ;5 € %] (2.19)

TEMPERATURE FIELD
On applying the conditions (2.4),( 2.11)and(2.12) we have

(14n,)
o, © = Zz(1+?72) A ©) 3.D
and
k1, (8) k20, () } ] _
F [a {a1(1+771) + oz (1+7,))’ E>x 0 (3.2)

or

EF [{0,®)); %] = 0,0,

Hence from condition (2.4) we get the following
pair of dual integral equations.

xeU

Flo,(©); &~ x] = —a; (14 7,). T)
Flo,(8); e>x| =0

Where F, and F, are Fourier cosine and sine transforms of F.

(3.3)

Now taking £, (&) = [, v (1) cos (&) dt

and it is easily shown that

—2a; (1+7,) d rt xT(x)
n dt fo Jez—x d

v (= 34

THERMO-ELASTIC PROBLEM

Now applying the conditions (2.1 to 2.3) and (2.8-
2.10) in the equations (2.17-2.19) we get.

€A, + (1 —Qp) By + L3EC, = r1{_§A1 +(1-QB; +
n,15EC, }
EA; + By + 138°C, = —Ty{—EA, + By + £%12C, }

EB, + nzcz = 1"2(@31 + nlc1)
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Solving these equations for A,, B,, C, in terms of
A17 Bla C1 we find

Ay =Ty [1+42Q{(1 — Q)n, +n,E°L3}] A,

+&7H (1 - Q) — QM (1 — QT L2E% (n, -
€)-T'm,(2— Qz)} + &TIZLZZ{F&(Z - QI2EQ; ] B,
+ [, 12 = Q7 (1 - Q{rin, 13(n, — &) -

1H2112]"21(111 - &)} + nszz{rlaz (n1 + a)]-'zl + irzlez})]
Ci

B,=Q[2I'1m, A, + {T,156%(n, — &) =Ty, (2 —
Ql)} B, + {nlL%Fz&(nz —-£) - szLz@(le + <t:)}(:1]

Q128 A; +{I,Q,8 + (2 — QEl} By +
{F2Q2n1 +T,15 i (nl + &)CJ]

Where Q = L3¢ (ﬂz g) + Q2m,

Now using the condition of equations( 2.5-2.7) we get

Fo[&(A; +A,) + {(2 - Q)B; — (2—Q)By} +

LZZEanCZ - L?Lénlclzx] =0

4.1
F[A; — A, —E(LiC, + 153C,) : x] =0
4.2)
FS[Bl_B2+C1+C2:x]=0, XSU’
“4.3)

Substituting the values of A,, B,, C, in the above
equations (4.1-4.3) and then from boundary conditions (2.1-
2.3) we get.

Fe[-EA, +B, +138%C, ] =22 xeU

Hq
Fs[-€A; + (1 — Q) By + 1367, C, s x| = 0, x&U (4.4)
Fc[BlE_: +n,C ¢ x] =0,xeU
Solving the equations for A;, By, C; we obtain

aA; = {c10(&) — Cyy(&)}(bycs — bzcy)
—{c3y (&) — cxX(&)}(bscy — byey)
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aB; = (aico —axc1) {c3y(E)— ¢, X(E)} - (axc5-a3¢,)
{c2Q(8) —c3 y(8)}

ac,C; =af(€) — (a;Dy +byDy)

Where

a=(a;Cy — ayCy) (bacs-bscy) — (axc3-a3¢,) (bica-bacy)

a; =1-T; +2I5Q7 (n, (2 — Q) — &%L3n,
- n,{(1 — Q) +13&%)

b, = L3n,Q 1E{I,Q, + I (2 — QDY+ &7 T (1 — Qy)

—Q (1 = Q){T;13%(n, — &) =1, (2 - Q)}
+ észznz{r1(2 —-Qu)+ erz}]
+(2 - Qe QI3 (n, — &)
-Tm,2-Q)} -8 2-Q)

€ = F1111L21 - Q_l[(l - Qz){nlrlez(le - E.s)
—-In,L3(n, —€)}
+n,L3{1 €% (n, + E)L+T,m, Qz}]
+(2 - Qe QI 1i(n, + &)}

(nz + E.z) - Flnlel(nl + &))
+ L4n,Q YI,Qyn, + Iy 128% (0, +8)
- L21n1}

a, =1+T; +2Q7YIyn, (1 — Q) + Tyn, 8212 + &°13]

b, = Q71 — QT,T3¢(n, — &) —T1E ', (2 — Q)}
+ Lzznz{Flﬁ(Z — Q) +T2EQ,3
+1364I,Q, + (2 — QT4
—&7(1- Q)

¢ = QA - Q){rm,13(n, — &) — Iy, Li(n, +€)
+n, LB E% (n, + )13 +T2n, Q)
+ 12E{T,Q,n, + 111387 (n, + &)} + L3¢
- leL"i]

az = _2F1§Q_1(Tl2 +8)
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b; =1+ Q_l[erz&; + (2 —Qpér,
— {13 (n, - &) = I, (2 - Q}]

cs = 1+Q7 [rQn, + 113E%(n, +©)

Dy = (bycs — bscy) {e:0(8)-cr1y (§)} - (bicy — bycy) {csy(E)-
2 X (&)}

D, = (aic; — axcy) {c3y(E)-c2 X (&)} - (axc3 — asca) {c20(E)-
vy (§)}

Putting the values of A;, B;, Ciin the equation
(4.4) which are reduced to the following sets of equations:

Fe (2 (8) ¢ (&) +b() w (&) +¢(8) X (§) : x) = f(x)

Fs(b(8) ¢ (&) +c(©) w (&) +a(8) X () :x)=0
4.5)

Fe(c(8) ¢ (&) +a®) v (©) +b(E) X (5):x)=0

where,
a(8) =a" (a0 — a305) ©5 - £ 2! (byes — byey) ¢ + LAE CT !
b(&)=a" {(bycs —bsey) ¢; + (bic —bycy) c3 }

+a’ {(a1c; — acy) €3 + (a3 — a3¢)) €1}
c©= a’! (axc1 —aicr) cr- € a’ {(bic; —bac))} ¢,

fix) = —;f)

1

¢ () =aA; +bB; +¢,C
y(E)=a A +b, B +c, C

Indian J.Sci.Res. 10 (1): 65-78, 2019
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X (@) =a3A; +b3B;+c3C
And

F (0 (©):x)=0

F, (y (8):%)=0
4.7)

F (X (©):x)=0

If we differentiate (4.7) with respect to x we see
that ¢ (§), v (§) and X(&) must satisfy the equivalence
relations (cf. 734 of (41))

F.(a (@) ¢ (©)+b ()Y (©)+cQ)X(9):x)= fx)

Fo(b(©) ¢ @) +c(© Y (©)+ald)X(Q):x)=0,xel

Fo(c(© ¢ (©)+a(@) ¥ () +bE)X(E):x)=0
(4.8)

Fo(0(8):x)=0
F;(W(E):x)=0,xeU
F. (X(8):x)=0

The set of simultaneous integral equations (4.8)
can be reduced to Riemann boundary value problem.

(4.6)

If we suppose

r(x) ,xeU
Fe (9 () :x)=
0,xeU'
si(x),xeU
F, (¥ (8) : x) =
0,xeU
wi(x),xeU
F (X (§):x)=
0,xeU' (4.9)

Indian J.Sci.Res. 10 (1): 65-78, 2019

Here F. and F; represent Fourier cosine and sine
transforms and U = U}‘zl(aj,b]), U' =R - U, R'is the

positive real axis, 0<a;<b;<ay<b;...... <a,<b,

Now using (5), it can be easily shown that

F(0(8) 1 x) ==1 “% du
Fo(¥ (&) :x)=—-1 = du (4.10)
F(X (8) =21 * du

where r(u), s(u) and w(u) are odd and even

extensions of rj(u), s;(u) and wi(u) respectively to the
interval U. Using (4.9) and (4.10) the set of integral
equations (4.8) reduced to simultaneous singular integral
equations.

b
a(®) — 1(x) 2] = du + ¢ (Hw() = f(x)

Lu-x

a(®) — s(x) "@f W(“) du+c@rx) =0 @4.11)

a(g) — w(x) %{J(—_u)x du+c(§)sx)=0

If we write A(x) =s(x) — ir(x) + w(x) (4.12)

Then (4.11) reduce to the singular integral equation

ia(&)n(x )+C@nb@“(“id —f(x),xeU (4.13)
where f(x) = f,(x) + f, ().

If we define
Az = =129 qu

2niUu—z

and on using the Sokhotski formulae (8)
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A-A = LX), AT A =W gy

2ni Uu—x

(4.14)

then(4.13) reduces to the Riemann boundary value problem)
A+ KA ()= i{c(€)-bE)+a (@)} fx)xeU4.15)

where k = (c(&)—b(&)—a(&)) >0

c®-b®+a(®) (4.16)

The solution of this problem is well known (13)
and is given by

A@="2{c@®-b@® +a@[|Fneydt+
P@DX (@) (4.17)
where
p@)=h "' +h 2" + ... +h, (4.18)

h;, hy, h;, ... h, are arbitrary complex

constants and X(z) is the solution of homogeneous Riemann
problem-

X" (t) +KX (1) =0,t ¢ U (4.19)

This problem has known solution (13)

Xz()= H}‘zl((z - a])(z - b]))_%_im [(Z + a])(z -
—Y—iw

b])] . 31?50

—Yh—i®

= (2= b0 = by) O T, (2 — ay) (z + by))

(z+apz—b)) " a,=0 (4.20)
c@-b@®-a (Fé))

1
=1
wherew =27 log (c ©-b®+a )

In case f(x) is a polynomial (5, p, 1030)

c(®-b ) [f(_z) _ L(Z)]

;o _
t=m (c(a)—b(a)+a<&) X@)

U x+(0)(t-2) (4.21)

where

f(Reie) Rel®

. 21
_ 1 Lim
L@ = X (Rel®). (Rei0—2)

21 R—w

do (4.22)

Hence (4.17) yield

i

AD=%w

(f(z) — L(z) + P(@)X(2) (4.23)
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Using (4.9) and 4.10) it can be shown that-

6y (1,0 1) =03, (5,0 = b & pd, *2 du

Gay (X, 0 ) = Gy (x,0-) = fy b (&) puut) > du, x £ U

w(uw)

My (%, 0) = myy (x,0-) = fo b (&) ), 2 du

u-x
As given in (7) the continuity conditions( 2.5) are satisfied
if

Fi(9(©):x)=0

F.(W(E):x)=0, xeU

Fs(X (&) :x)=0

Substituting the values of ¢ (§), ¥ (&) and X(&)
from (4.9) and interchanging the order of integrations we
obtain

by

[ si(u)du=0

a

by

[ n@du=0,J=123....n
a

(4.25)

by

[ wi(udu=0

ay

Using (4.12) we obtain

by
fA(u)ydu=0,J=123..... n
ay

(4.26)

CONSTANT TEMPERATURE

If we consider the physical important case in which
the cracks are opened by the application of a prescribed
constant temperature Ty at it surfaces then,

T(x) = Ty (x) = constant and from the equation (3.4) we
have

Indian J.Sci.Res. 10 (1): 65-78, 2019
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\P(t) M Tl (Say)
Hence, ¢,(&) = Tigmé 5.1

We shall also assume that there is no external
pressure applied to the surfaces of the cracks, so that p(x) =
0. Thus we have

fi(0=e \/%{) $1(8) sin (&x) cos (&t) d&dt= e, \/% - X

(5.2)

f, (x)fezf[log [1—x2] + xlog |1+X]+ Cq
Where

_ 2k T(@+ kz)oq (1 +n,)+(1 + kaz(1 +1,))
e= T (5.3)

_ 2k (T +kp)og (1 +m,)+(1 +kyop(1 +n,))

2 (xl(l + nl)
- iz : 4

Thus g(x) = ;T ix (E) - ;1—)3 (x2 + Z)+ C (5.4)

Now substituting the value of g(t) and x(t) in (4.21) and
(4.23) we have

s (x) = —{b(&)? — a(£)?}”[(d;x® + d,x + d3)cos @0 +
(cx* + c'x% + ¢")sinwb] (5.5)

r(x) =—{b(&)? — a(£)?} [(d;x® + d,x + d3)sin 00 +
(cx* + c'x2 + c")coswo] (5.6)

w (x) = {b(€)? — a(£)?} [(d;x® + d,x + d3)cos wB +
(cx* + c'x% + ¢")sinwb] 5.7

Where d;, d,, d; are no constants while ¢' and ¢" are
unknown to be determined. Since, s(x), r(x) and w(x) are
odd and even, we have c' = O. On using (4.25) we have

b
[ [(d1x3+d;x)sine0+(cx*+cx?)coswd] dx
n_a
¢ = b
[ coswb do
a

(5.8)

Indian J.Sci.Res. 10 (1): 65-78, 2019

PARTICULAR CASES

Case-I: Single Crack at the interface opened by constant
pressure

In the case of single Crack L, is to be taken the
interval (0, 1). From 4.8) we get simultaneous dual) integral
equations.

Fe(a(8) ¢ (8) +b(8) ¥ (&) +¢(8) X () : x) =1f(x)

F(b(©) ¢ @) +c(© Y (©)+al)X(§:x)=0,0<x <
1

Fo(c(©¢©+P©)+bOX©):x)=0  (6.1)
F (P (©):x)
Fo((©) :x),x>1, (6.2)
F (X (§) 1 x)

Here the crack is defined by y =0, -1 < x < 1.
Now taking n = 1 we obtain from (4.20), (4.18),(4.22),
(4.23)

X(z) =(z + 1)“/2“‘”(2 + 1)_%_i“’p (z) =h (6.3)
L (z) = (z-2io) f
ify {2b (€)}" (1- (z + hy) X (2))

where f; is a constant such that f(x) = f; is given by

A(z)=

fo= ((aic; — axcy) (bacs — bscy) - (ascs — ascy) (bic, — bacy))

Po
2py
And it is easily shown that
%
_ c@-b@+a@]” 1 a\vige cin
= e oo o] (X)) xsinod
wcosmb}

x?)™"{x cosmd —

fo [c(®-b®+a(®
S 2 [c@ b (&) a(a)] -
osinmb}

%
W(x)=- fo [M} 1-

2y-% o
26@ lc@-b©®-a@® x*) 7 {x cos®B — sinwb}

(6.4)
Gy (x 0 1) = —po(1—(1 — x*) 7" (x cosobd — sinw)

Oy (X 0 4) = po((1 — x*) 7 (cosmb + x sinwd)
(6.5)

myy (x 0 +) = —pg ((1 — x*)™"*(® coswb + x sinwb)
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Case-II Two Collinear Griffith Cracks

In the case of two collinear Griffith cracks, we
choose L; = (a, b) and the cracks are given by y =0, a< x
< b, a # 0. In this case, the equations (4.8) reduce to the
following set of simultaneous triple integral equations.

Fo (¢ (8):x)=0
F (Y (8),x)=0
F. (X (8),x)=0
Fo(a(8) ¢ (8) +b(8) ¥ (§) +¢(§) X (§) : x) =f(x)

F (0 (8) ¢ (©) +c(©) Y (5) Ta(®) X(§):x)=a,0<x<b

0<x<a (6.6)

Fe(c(6) ¢ (&) +a€) ¥ (§) +b(&) X (§)=0 (6.7)
Fe (0 (8),x)=0
F. (¥ (6),x)=0, x>b (6.8)

F. (X (8),x)=0

In this case we may write the following from
(4.18), (4.20), (4.22) ,(4.23) on puttingn= 1.

x(z) = ((z — a) ( — D)) *—((z + a) (z —

b)) —P(z) =hyz + hy (6.9)
. . . tfo
and L(z) is the constant term in the expansion of X0 ()
ow X(t) (t—12)
1

— 2 _ h2)(+2

= fo g7 ()

oy (t—b)(t+a)]*

(t+Db)(t—a)
-1 b2, 2,
-eh(1-1) a-pra-B
b\i® a\le b\ i® 2\ "io
(19 (1+3) 1+ (2-3)
2_ 2_b2 i 2(.02
= t,f, [1 +2-2 ] [1 + 2io(a — b) —t—z(a—b)z]
(6.10)

Therefore constant term in this expansion is
L(z) = fy(z% + g1z + g3) (6.11)
Where
72

a+b?

g, = 2io(a —b),g,= 20*(a —b)? —

are the constants and hence

ifo

{o b(©)}

A(2)= [1-{z2 +p@X (@)}Xz] (6.12)

where h; and h, are arbitrary complex constants. Now for a
< x| £b, we have

, K .
X*x) = o0 (cosmb + i sin ®0)

—N i ..
X (x) = Koo (cos®B + 1 sin ®O)
(6.13)

- (x-a)(x+b)
where, 0 =log ((X+a)(b_x))
Hence
AYG) = A7) = 220k + by x+ hy) (X -X)

2b(®)
= —fo[{b(©)? — a@®*H{(B* —x*)(x* —a?)}] ™"

i (x*+hy x + hy) (coswb + i sin @)
(6.14)

and

ifo

26
=ifob(®) 71— (b* = x?)(x* —a?)} ™"

AT+ A x) = (2-(x*-hy x+ hy) (X" - X)

i (x> +hy x + hy) (coswb + i sin w0)
(6.15)

Now from (4.14)

S(x) = —fo[{b(8)* — a(€)?H(d? —x*)(x* —a*)} ™" (x* +
hix +h’,)] cos w0 - (h"; + h",) sin ®0)

1(x) = —f, [{b(€)* — a(€)*H(* — x*)(x* —a®)} " (x* +
hix +h’y)] sin @0 - (h"; + h";) cos ®0), a <[x|<b
(6.16)

w(x) = fo[{b(&)? — a()*H{(x* — a®)(b* — x*)} " (x* +
hix +h’,)] sin 00 - (h"; + h",) cos ©B)

where

hl h,l + ih"l

hz h,z + ih"z
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nll Lf1 (xu(l;)) du= A"(x) + A” (%) (6.17)
1 [ r(w- ls(u)
TCILIW
=ifo{b(&)}(1
—i{(b? - x®)(x* —a®)} ™"
{(* +hyx + h,)(cos w0 +isinwb) (6.18)

Separating into real and imaginary parts, we have

1 r)
ng (u—x)

u = —fo{b(&)""}1
+afe} {(b* —x*)(x* —a?)} ™"
{(x? + h';x + h',)sin ©® + (h";x + h",)cos @8}) (6.19)

1f a®) (2 _ 2)(x2 — 221 % 2
L1 g U= fop g (0% —xH* —af)} ™ {(* +

h';x+h';) cos @0 + (h";x + h",)sin ©0)

1 w du = fo{b(é)_l}[l _ a{&}]{(bz —x2)(x? -

7Ly (u—x)

a?)} "} { (x> + h';x +h',) sin @ + (h";x + h",)cos ©0)

Againfor0<|x|<a,b<|x|<aie. xelL;

zilLfl ﬁ(ui du= A"(®) - A" (%) (6.20)
Therefore,
1 [ s@)-—ir (u)
2leT
21f0 1 N -
b(&) ( _(X + 1X+ 2) (X))
_ 2ify »
=50 (1= {(x* =bH)(x? —a®)} (x> + hyx + hy)

(cos®B + isin w0) (6.21)

Separating real and imaginary parts, we get

1) s
ELlu—x 4= b(&)

(1-{(? —a?)(x* —bH)}™"

{(x* 4+ h";x+ ;) cos @0 — (h";x + h",)sin w0})
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1) s

Alu—x U= b(g) RSP

{(x2 + h';x + h',) sin @® — (h";x + h",)cos 0})
(6.22)

1fw(u)d B
nliu—x 4= b(&)

Hx* - b)Y

{(x* +h';x+h',) coswd — (h";x+h",)sin 00})
From (4.24) the stresses are given by

Oyy (X, 0+) =- 2b(§)lfl1 [{(aicz —azcy)(bycs — bscy) —
(az€3 —azcy) (byc; —bycy)}) Fo (W (§):x)

= —2b(§)u1 [{(a1c2 —azc1)(bacs — bscy) — (azcs —
a3cy) (bycy — by ™!

1 sw

nliu—x

=By[1 - {(x* —b)(x* —a®)} ™ {(x* + h';x +

h';) cos w0 — (xh"; + h",)sin w6}] (6.23)
Oy (%, 0 +) = = 21, b(&)[{(arc; — az¢q)(bycs — bscy) —
(azcs —azcy) (bycy; —byey)}) Fo (W (8):x)
= 2u1b(é) [{(aicz — azcy)(byez — bacy) — (azc3 —
a3cy) (byc, —bye)P™!

1] r(u)

n Liu— x
=P[1 = {(x* = b?)(x* —a®)}7* {x* + h';x +
h';) sin @@ — (xh"; +h";)cos w6}] (6.24)
myy (x, 0 1) =2p b(E) [{(asc; — azey)(byes — bzcy) —
(azc3 —a3Cy) (bycy —byc))PN™ Fo (W (§) 1 x)
= 2u1b(§) [{(a1c; — azc1)(bacs — bscy) — (azcs —
a3Cy) (byc; —byc)P~!
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1w
nl1 u-x du
=-P[1+{(x* =bH)(x? —a®)}” {(x®> +h';x +

h';) cos w6 — (h"; +h";)sin ©0})] (6.25)

For large x, we have

2\ 72 =%

Gy (x,0+) =P, [1— 1(1-3) (1-%) {e2+

e ) (1= S5+ 255) oy 1) (wo - 2]
=P [1 - (Xiz + azz):f) {x?+h'x+h, —20(—a)h", —

20%(b —a?) + 0(x ™)

=P, [1 - {1 - % + 0(x—1)}]

=Py [+ 0(x2)]

(6.26)

Similarly,

G (.0 =By [ (0", +20(b—a) +0 (x3)|  (6.26)
mgy (x,00) =Py [ = 0(x )] (6.27)

Therefore, we have
h, =0andh’; + 20(b—a) =0

But r(x), s(x) and w(x) are even and odd functions
of x, we get h", = 0 and hence

s(x) = —fo[{b(€)* — a(€)*H(b? — x*)(x* —a®)} " {(x* +
h',) cos ®® + 20x (b — a)sin 0]

r(x) = —f[{b(&)* — a(€)*H(b?* — x*)(x* —a?)} ™" {(x* +
h'’;) +sinw® + 20x (b — a)sin 0b]

w(x) = —fo ({b(€)* — a(&)*H(b* —x*)(x* —a®)} " {(x* +
h',) sin 0
(6.28)

and

AMx) =s(x) —ir(x)= —fo ({b(&)* —a(@)*H(b? —x*)(x* -
a?)}™” {x*—2iw( —a)x+ h',}el® (6.29)

74

The constant h', can be calculated from the condition (6.12)
b

which in this case is [ s(t) dt =0 from where we get.
a

b

[{(b? —x?)(x? —a®)} " {(x*> + h';)coswb +
a

2w (b — a) x sin ®0}dx =0

(6.30)
This gives
h, = {20 @-b) -1}/ 6.31)
Where
b cos®b
=) e
b X sin w0
b= ™
b,
I, — (6.32)

= f /(bz_xz)(xz_aZ)dX
a

To calculate the above integrals we put x = a cos’0
+ b sin’0 and separating real and imaginary parts by using
binomial expansion in the following integrals.

b eiu)e b ) )

f V(x2-a?)(b%-x2) X f (X - a)_/“'“”(x + a)_/“'“”(b +
a a

X)—‘/z—im

(b — %)™ dx

n
N (a+b)cosh o

F;(%+ i, % —io, %io, 1,2, —2) (6.33)

b -
oo xem L V— 3 1

| et =2 T (= i)l (2 + 10)) Fa(% +

a

in, % —ion, % — ico,% +io,2,z,-7)

+ =T (h—i0) T (%~ i0)Fs(% +io, % — io, % -

io,1,z,—7) (6.34)
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b

x2 eiu)e
f \/(Xz_aZ)(bz_XZ)dX B (a+b)cosh e
a

TEaZ

F;(2+im, Y2 —im, Y2 —

io, b+iw,1,2,—7)

+(b-a)T (4 —i0) I C+i0)F;(%+io, % —io,2 +

io,2,z,—1z)

-2 @—im) r (§+im)F3(1/z+im,l/z—im,§—
(6.35)

i, 3,z,—2)

where z = (b-a)/(b+a) and F; is hypergeometric
function of two variables defined in (14, p. 1053).

Now separating real and imaginary parts we get

T

_ = L S 2
lo = (a+b)cosh o 2F, (%2 + o, %2 — 0, 1,27)
(6.36)
11 - Cojzznw F3 (1/2 + i(O, V2 — i(D' Va— i(O, 2, z, _Z) (637)
I = Fs(% —io, Y2 + io, ¥+ ie, % —
2 (a+b)cosh o 3 ’ ’ )
i, 1,z,—z)
+ 20D B =i, %+ o, %+ i0,% — 0 2,2,-2)
2cosh o

n(b—a)? ®
4(a+b)cosh ne <P=0

(‘/z—iw)p(‘/z+iw)p
313)p

.ZP (6.38)

For 0 <x <a, we have

Oy (X, 0 ) +1i 0y (x, 0 +) + my, (x, 0 +) = po[1+
{(@® = x?*)(b? — x?)}7(x* + h’, — ih"; x)x e7"0](6.39)

If N, N, and N; be the normal and shear stress
intensity factors at the crack tip x = a, then they are given by
the equation

N1+iN2 +N3 =

V0o (6,0 10y (504 +

myy (x, 0 +)3ei]
=-po[2a (b? — a?)]%(a? —iah"; + h’;) (6.40)

Similarly for x> b
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oy (X, 0 +) +1i0y (x, 04) + my (x, 0+) =Py[1+
{(x% —x>)(x%*-bH)} " (h", + h"; x —x?)e ™]  (6.41)

If Nj, N, and N; be the normal and shear stress
intensity factors at the crack tip x = b, then they are given by
the equation

Ni+iN, + Ny = 2 ((x =) {0, (%, 0 +) + i 0,y (X, 0 +) + my,

X—b
(x, 0 +)} el®0)

= —Py[2b (b% — a?)] %(h’, + h", b — b?) (6.42)

Case III. Three Collinear Griffith Cracks

Here we shall consider the case in which three
collinear Griffith cracks are located at the interface. Also we
take the prescribed pressure p(x) = Py (a constant). Let the
three cracks a, b, ¢, are positive number such that a <b <c.

From equation 4.20) we have

= 2 _ .2 2 w22 _ 2\-% [(z+a)(z-b)(z+c) lo
X(z) ={(z" —a%) (z" —b* (z" — c*)} [(z—a)(z+b)(Z—C)

(7.1)
P(2) = (h;2% + hyz + hy) (7.2)
And

f(z) = [(a;c; — az¢1) (b2 — bycy) — (azcs —

p
a3C;) (bycy — bycy)) 2—:1

= f,say in (4.22), we get

L(z)=fy (z3 + g1z° + gz + g3) (7.3)

where g,, g,, g3 are known constants given below:

g; = —2io(a+c—b)(a® +b? +c?)
g, = —2{w?(b? — 2ab — 2bc + 2ac) + a% + ¢?}

2
g; = io {§ (1-20®)(c®+a%-b?
—4(a+ c)(ac + b2w?) — 4b (c? + a?)
— 8abc 0)2}

From (4.23) we obtain
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A(z)=fy—[1 — (z3 + hyz% + h,z + h3) X (2)]

b ® (7.4)

Following values of X* (x) and X~ (x) are obtained
by (58) (a) for the relation b <x <c.

i K”*(coswby +i sinwby)
{(@2-x2)(x2-b?) (c2-x2)}*

X*(x)=—-KX™ (x)= (7.5)

(b) Fortherelation0 < x < a

i K*(coswby + i sinwby)

+ = — - =
X" (x) KX~ (x) ((a%—x2) (b2—x2) (2 —x2)} (7.6)
c For the relation a< x< b
(c)
+ _ v _ (cosmBy +1isinwby)
X=X 0= ~asmeea@mar 77
(d) For the relation x> ¢
+ _ v _ (cosmb, +1isinwby)
KT =X 0= ey e-c (7.8)
Where

x+aEx—-b)x+0)
(x—a)x+b)(c—x)

6. =1 +a)b-x)(x+c)
2 =708 [(X—a)(x+b)(x—c)]

0, =log

Now from the equations (2.8),( 2.9), (2.10),( 4.14) we get-

Mx) = AT —-A = i{(ajc; —azcq) (bycs — bscy) —
(azcz —azcy) (byc; —bycy)}

{2b(€)} 71 (x® + hyx? + hyx + hy) (X* —X") (7.9)

From (7.9) we get

- (b®-c(®))*-a®)?
AT = A0 = | (o) (@2 = X (07 -
x2)(c? — x®)}7(x® + hy;x? + hyx + hy) (coswd; +

i sinmel)] (7.10)
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+ _ . s {c(®)-b(&)}?- a(®)? 2 _
AT+ A7) =ify [1 1({C(£)2—b(é)}2+a(é)2) {a
x2)(b? — x?)(c? —x?)}7”(x® + h;x? + h,x +

h;) (coswb; + isinwel)] (7.11)

Now taking

where h;, and h;. are real constants using equations
(4.12),(4.18), (7.5), (7.6), (7.9), (7.12) we get

(a)forb<x<c

_ e [(CO-D@+a@ NP 2 2yhz 2y 2
s(x) = —fo {(c(a)...—b(&)—a(a))} {@ —x5) (" —x*)(c
x2)} %

{(x®* +h';x? + h', x + h'3)cosmb,
— (h";x*+h", x +h";)sinwb, }

e [(c@O-Db@O+a@N] (12 _ w2N(m2 _ w2N(n2
(%) =fo [(c@—b(&)—a(&))] (@ = x5 —xH)(c
x2)} %

{(x®+h';x* +h', x + h'3)sin w0,
— (h";x?+h", x + h";)coswb, }

—_ [((@=b@+a@\* (2 | 2yhZ _ ¢ 2) (2
wx)=—fo [(c(a)—b@)—a@)] (@ =xH " = xH)(c
x2)} %

{x®*+h';x* +h';x+h'y)coswb; + (h"; x> +h', x +
h"3)sinwd, } (7.13)

(b) for0<x<a

_ e [(c@=b@+a@\* (2 _ 2vhz _ w2y o2
s(x) = —fo [(c(&)—b(@—a(&))] (@ = x5 —x9)(c
x2)} %

e [(c@-b@+a@\T " (a2 2vmz L w2yen2
r(x) = fo [(c@)—b(g)—a(z;))] (@ =xH " —xH)(c
x2)} %

{(x® +h';x? + h', x + h'3)sinwo,

+ (h";x2+h", x + h";)coswb,}
(7.14)
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_ e [(€@=b@+a@N (a2 _ 212 — ¢2)(c2 —
W) =fo [(c(a)—b(g)—a@))] (@ =xH (" =xH(c

{(x® +h';x> + h', x + h';)coswb,
+ (h";x? +h", x + h';)sinwb,}

Now since r(x), s(x) and w(x) are odd and even
functions of x respectively, we must have

hll = hlz = h,3 =0 (715)

from the equations (4.14), (4.12), (2.8 — 2.10), we get for a <
x< b, x>c.

- _ + :Lf A(u)
A (x) = A"(x) 2L oo du

Or

_ _ + :if s(uw)—ir(uw)+ w(u) _ i
A x) = AT(X) il du=if, 'S [1+
(7.16)

(x3h;x? + hx, + h3)Xt (x)]

Substituting the values of X* (x) from (7.7) and(7.8) and
using (4.4) we have

fora<x<b

Oy (X, 0+) = 05y (x, 0 -) = =Py (1 + {(x* — a®)(b? —
x2)(c? — x?)}*{(x*h’, x)coswd — (h";x% + h";)sinwb})

(7.17)

Oxy (Xa 0 +) = Oxy (X7 0 ') = PO [{(Xz - aZ)(bZ - XZ)(CZ -
x2)}*{(x*h’, x)sin®® + (h";x? + h";)coswb}]

(7.18)

myy (X, 0+) =myy, (x,0-) = —Py[1 + {(x* —a®)(b* —
x2)(c? —x?)} *{(x*h’, x)cosw® — (h";x% + h";3)sinw6}]

(7.19)

forx>c¢
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Gyy (X, 0 +) = Oy (X, 0-) = Py[1 — {(x* — a?®)(x* —
b?)(x? — c?)}*{(x*h’, x)cosm® — (h";x% + h";)sinw6}]

(7.20)

Oxy (Xa 0 +) = Oxy (X, 0 ') = 'PO [{(Xz - aZ)(XZ -
b?)(x? — c?)}*{(x*h’, x)sin®® — (h";x? + h";)cosmb}]

(7.21)

myy (X, 0+) =myy (x,0-) =-P[1 + {(x* —a*)(x* —
b?)(x? — c?)}*{(x*h’, x)cosm® + (h";x% + h";)sinw6}]

(7.22)

for large values of x, using 6.17 — 6.6.22) we get

Gy (X, 0+) =0 (x?)
Oy (x,0 ) =Py {2o(a+c—Db) + h" Jx7 1 + 0(x72)

myy, (x, 0+) =0 (x~2)
Assuming stress components to be 0(x 1) for large x we get
h',=-2w(+c-b)

(7.23)

Other constants h', and h"; can be calculated by using the
condition (4.26), from it we obtain

f (x? +1ih";x% + h", + ih"3)(coswh — isin mO) =0
4 (2 —a®)(x? — b?)(c2 — x2) T
(7.24)

NI4+NZ4+N3=M" ((@a—x)* {oyy(x,0 +) +

T Xow

1G4y (%, 0 +) +myy (x, 0 +)}e'?)

forx > ¢

NI4+NZ4+N3=M"((x—0)” {oyy(x,0+) +

T Xow

10,y (%0 +) +my, (x, 0 +)}el®9)

Similarly the normal and shear stress intensity
factors can be calculated at the crack tip x =b and x = c.
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RESULTS AND DISCUSSION

In this paper, thermal stress field due to a
system of Griffith cracks lying at the interface of two
bonded dissimilar micropolar elastic half planes is
considered. A general formulation of a Griffith cracks
are situated with respect to y-axis and taken
perpendicular to the interface has been considered. The
problem is first reduced to a system of simultaneous
dual integral equations which are further reduced to the
solution of Riemann boundary problem.
Expressions for evaluating the stress intensity factors at
the crack tip are derived. Calculations have been done
for collinear cracks when constant temperature is
prescribed on the crack surfaces. (Bregman and Kassir,
1974; Ejike and Sneddon, 1969; Gerasoulis and
Srivastav, 1980; Gradshteyn and Ryzhik, 1965; Green
and Zerna, 1960; Lowengrub and Srivastava, 1968;
Sneddon and Lowengrub, 1969; Srivastava et al., 1977,
Srivastava et al., 2000; Srivastava and Lowengrub,
1970; Tranter, 1961; Yadava et al., 2002).
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