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ABSTRACT 

 To achieve high data rates, reliable data rate transmission and near capacity performance of next generation wireless 

communication systems iterative processing has been widely considered. However, such an efficient receiver design has been 

made significant challenge. In this paper, MIMO detection techniques have been investigated which achieves reliable data 

transmission with less computation complexity. We studied and review the MIMO receiver algorithms such as Sphere 

decoding (SD), K-best decoding and interference cancellation. In order to reduce computational complexity without significant 

performance degradation low complexity K-best (LC-K best) base d SD is evaluated. 

KEYWORDS: Iterative Detectors; K-Best SD; LC-K-Best SD; MIMO; Sphere Decoder.  

 Wireless Communication systems have known 

a big evolution over the last decade. Their 

developments have been driven by the increase of 

human demand to get information rate with better 

quality of service (QOS) in shortest possible time and at 

highest speed. However, many challenges arise and are 

directly related to the limited transmission power, 

frequency spectrum allocation and channel propagation 

issues as time and frequency fading.  

 MIMO technology employs multiple antennas 

both at transmitter and receiver to achieve high 

diversity through space time coding and high data rate 

through spatial multiplexing(SM) without the need of 

additional spectrum and transmit power. 

 Further the techniques for the implementation 

of iterative processing in MIMO OFDM systems has 

been evolving to achieve a trade off between BER 

performance and complexity  

 The aim of this paper is to address the various 

challenges involved by the iterative receiver combining 

MIMO detection. Therefore, an advanced receiver must 

be developed at algorithmic and architectural levels to 

achieve near optimal performance with tolerable 

computational complexity. The receiver must also 

satisfy high throughput, low latency and low power 

consumption requirements for wireless communication 

systems. 

Novel Contribution of this paper can be summarised 

as 

 In literature various detection algorithms such 

as SISO detection algorithms for iterative processing of 

MIMO receivers has been studied.  

 For the benefits of low computational 

complexity and latency without significant performance 

degradation of MIMO system, the LC-K-best has been 

studied and evaluated in this paper.  

 Complexity and performance analysis of LC-K 

best decoder has been compared with existing MIMO 

detection algorithms with different modulation 

schemes, channel models and different configuration. 

Therefore, based on simulation results LC-K-best 

decoder algorithm achieves optimal performance with 

low complexity compared to conventional techniques. 

TREE-SEARCH BASED DETECTION 

 The detection algorithms problem can be 

eliminated with help of tree-search based algorithms 

[Wubben et.al., 2001 & Damen et.al., 2003]. Large 

number of tree search based detection algorithms has 

been reported in the literature which archived near ML 

performance with low computational complexity. Some 

of which are shown in Figure 1.  

 
(a) tree search based on Depth first SD 

 
(b) tree search based on Breadth first K-Best 

decoder 
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(c) Breadth first search Fixed SD 

Figure 1: different Tree-search strategies 

Depth First Search SD 

 This algorithm is used to solve the detection 

problem and achieve near optimal performance with 

polynomial average computational complexity for a 

large range of SNR [Hassibi and Vikalo, 2001]. 

 The SD was originally defined for the 

computation of minimal length lattice vectors [Pohst, 

1981]. Further improved methods has been introduced 

for calculating the short lattice vectors [Fincke and 

Pohst, 1985], it was then used for ML estimation. 

Viterbo and Biglieri applied the Fincke-Pohst (FP) 

algorithm to lattice decoding [Viterbo and Biglieri, 

1993]. Schnorr and Euchner [Schnorr and Euchner, 

1994] proposed a refinement to the FP algorithm. 

Viterbo and Boutros used lattice code decoding in 

fading channels [Viterbo and Boutros] and Damen used 

lattice code decoder for STC. The basic idea of sphere 

detection is to limit the search space of optimal ML 

solution to a hyper sphere of radius rs around the 

received vector as shown in Figure 2.  

 Therefore, only lattice points that lie inside the 

hyper sphere are tested instead of testing all the 

hypotheses of the transmitted signal, reducing the 

computational complexity  
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 The channel matrix H, as we have decomposed 

into two matrix Q and R, H = QR. Therefore by using 

the QRD, the detection problem is equivalent to 
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Figure 2: Sphere decoder principle. 

 Where R is the triangular nature, the Euclidean 

distance can be defined as 
2

1
d y Rs= −%  which can 

be evaluate the accumulated partial Euclidean distance 

(PED) di with 
1 0

tN
d + =   recursively therefore, the 

PED is given as   
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 This process can be illustrated in Figure 3 

based on tree search with Nt +1 node, where i th level 

representing as ith transmit antenna. 

 Searching algorithm start with root node or 

level with first child node at Nt level, which represents 

the Nt
th

 antenna transmitted symbol. Then partial 

Euclidean distance (PED) is derived. If the PED d
Nt

 

represent the sphere radius rs then the searching process 

continuous up to Nt − 1 level and steps down process at 

i
th

 level until evaluate a valid leaf node at first level. 

The first found point with the depth first search SD is 

the Babai point (BP), which corresponds to QRD-based 

solution [Agrell  et.al., 2002 & Damen et.al., 2003].  

 

Figure 3: Tree-search representation of MIMO 

detection 
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 The tree-search can be also represented using a 

linear ZF filter with a Cholesky decomposition of Gram 

matrix (H
T
H) instead of QR decomposition. We note 

that both approaches are equivalent and give the same 

path metrics and candidates. Through our work, QR 

decomposition is used to describe the tree-search 

problem. 

Enumeration Strategies 

 Enumeration strategy refers to the order in 

which the children of a node are tested. Two 

enumeration strategies can be used: Fincke-Pohst (FP) 

[Fincke and Pohst, 1985 & Viterbo and Biglieri, 1993] 

and Schnorr- Euchner (SE) [Schnorr and Euchner, 

1994] as represented in Figure 4. 

 

Figure 4: Enumeration strategies: (a) FP and (b) SE. 

 FP enumeration tries to find the shortest lattice 

vector by traveling the tree in forward and backward 

directions without any ordering. SE enumeration is 

improvement of FP enumeration by ordering ascending 

order with respect to their Euclidean distance where 

closer hypothesis will be tested first [Schnorr and 

Euchner, 1994].  

 A low complexity SE decoding algorithm was 

therefore proposed for QAM modulation in [Guo and 

Nilsson, 2004]. Figure 4 illustrates these two 

enumeration strategies, where the numbers represent 

the order in which the hypotheses are tested. 

 The enumeration strategy has a major impact 

on the complexity of the search. Obviously, the use of 

SE strategy leads to reduction in the computational 

complexity. This is due to the fact that most probable 

hypothesis is first tested which reduces the number of 

visited nodes during the search, and avoids the 

computation of branch metrics for paths which will be 

subsequently discarded [Viterbo and Biglieri, 1993 & 

Guo and Nilsson, 2004].  

Radius Choice and Tree Pruning Criteria 

 One important challenge of the sphere decoder 

is the choice of an initial value of the search radius rs. 

Clearly, if an r is chosen too large, the number of 

visited nodes may be very high and then the complexity 

will be increased in an exponential manner, whereas if 

an r is chosen too small, there may be no nodes inside 

the hyper sphere.  

 A simple approach consists in increasing 

radius search (IRS) as proposed in [Viterbo and Boutros 

& Hassibi and Vikalo, 2005]. 

 In this case, the radius is first initialized to a 

fixed value r0. If no candidate is found, the search must 

be repeated using a larger radius (r1>r0) which 

dramatically increases the detector latency. In [Zhang 

and Fossorier, 2005] an improved increasing radius 

search algorithm was proposed. This algorithm exploits 

the most promising candidates in the incomplete tree 

when the search fails in order to avoid the redundant 

computation of branch metrics for the starting search. 

 Therefore, the use of a fixed sphere radius is 

not efficient for practical systems [Hassibi and Vikalo, 

2001]. The efficient solution for the initial radius choice 

is to use an adaptive approach. It consists in initializing 

the radius with an infinite value and updating it 

whenever a valid leaf node reached [Agrell et.al., 

2002]. 

 In the tree-search, when the partial Euclidean 

distance of a given node exceeds the search radius, this 

node is pruned. This algorithm uses a radius with a 

pruning probability for each layer. In a statistical tree 

pruning approach was proposed. This method uses a 

probabilistic noise constraint to tighten the necessary 

condition on each layer. Figure 2.4a shows an example 

of SD for Nt = 2, where solid lines and dash lines 

represent the forward and backward search in the tree, 

respectively.  

 It has been shown in [Hassibi and Vikalo, 

2001 & Hassibi and Vikalo, 2005] that the sphere 

decoder achieves quasi-ML performance with 

polynomial average computational complexity in terms 

of the number of transmits antennas. However, the 

worst case presents an exponential complexity [Jalden 

and Ottersten, 2005]. From an implementation point of 

view, the SD has two main drawbacks. Firstly, its 

variable complexity which depends on the noise level 

and the channel conditions making it unsuitable for 

constant rate applications. Secondly, the sequential 

nature of the tree-search limits the performance and the 

level of parallelism in hardware implementation. 

 Although SD offers significant reduction in 

complexity compared to ML decoder, it still requires 

considerable computational complexity. In order to 

reduce the computational complexity of SD and to 

obtain a constant throughput, other implementation 

strategies and sub-optimal algorithms have been 

developed such as K-Best decoder [Wong et.al., 2002] 
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and fixed sphere decoder [Barbero and Thompson, 

2006]. 

K-Best Decoder 

 The K-Best algorithm [Wong et.al., 2002] is 

based on breadth-first search in which the tree is 

traversed only in the forward direction. This approach 

commonly denoted as M-algorithm constructs the tree 

layer by layer retaining only a fixed number K of paths 

with best metrics at each detection layer. In Figure 2.4c 

illustrated that the tree-search with Nt = 2. The 

algorithm starts by extending the root node to all 

possible candidates and then sorting new path based on 

their metrics and keep the best possible K paths with 

smallest metrics for next detection layer. The K-best 

detection algorithms summarized as  

1. for layer i = Nt to 1 Do 

2. Extend each survivor path to all ( )2Q   possible 

paths 

3. Update the PED metric for each path 

4. Sort the paths according to their PED metrics 

5. Select K best paths and updates the path history 

accordingly 

6. If layer = 1, stop the algorithm else go to step 2. 

 K-Best algorithm is able to achieve near 

optimal performance with a fixed complexity and 

suitable level for parallel implementation. This fixed 

complexity depends on the number K of retained 

candidates, on the size of modulation and on the 

number of transmit antenna, where the number of 

visited nodes in the tree is equal 

to ( )2 1 2
Q Q

N Kt+ − .  

 However, K-Best algorithm does not consider 

the noise variance and channel conditions. In addition, 

two main limitation of K-Best detection algorithm has 

the expansion and the sorting operations. 

 Best algorithm expands each K retained paths 

to its 2Q possible children at each level. Thus, a high 

complexity is required to enumerate the children nodes 

especially in the case of higher order modulation and 

higher number of survival paths. For this reason, 

several enumeration schemes have been proposed in 

complex domain to avoid the full expansion such as 

phase shift keying (PSK) enumeration, relaxed K-Best 

enumeration [Chen et.al., 2007] and on demand 

expansion [Shabany and Gulak, 2008 & Wiesel et.al., 

2003]. Meanwhile, in real signal model, the 

enumeration can be done through a slicing operation to 

the nearest constellation point or simply through the use 

of a LUT [Wiesel et.al., 2003]. Recognizing the low 

efficiency of M-algorithm with high-order modulation, 

multi-level enumeration methods have been proposed in 

[Jong and Willink, 2005]. This approach partitions the 

constellation into different sub-segments such that each 

layer is effectively divided into sub-layers. 

 Furthermore, the algorithm requires computing 

and sort 2
Q
K  path metrics at each level of which 

( )2 1
Q

K − belonging to paths are pruned from the 

tree. This sorting algorithm is very time consuming.   

 Moreover, the algorithm is prone to error 

propagation especially for low values of K. One way of 

tracking this problem is to use an adaptive value of K as 

a function of the tree depth [Wenk et.al., 2006 & 

Shabany and Gulak, 2012]. A large value of K is used 

for the first layer which is then reduced when detecting 

the last layers.  

 The first implementation of K-Best decoder is 

[Wong et.al., 2002] for 4×4 16-QAM MIMO system. 

Different VLSI implementations have been 

subsequently proposed in the literature to improve the 

algorithm performance [Wenk et.al., 2006 & Liu et.al., 

2010]. 

Fixed Complexity Sphere Decoder(FSD) 

 The fixed sphere decoder (FSD) is another 

sub-optimal MIMO detection scheme further reduces 

the complexity of K-Best decoder [Barbero and 

Thompson, 2006, & Barbero and Thompson, 2006].  

The performance of FSD is based on two stages of tree-

search as illustrated in Figure 1(d). 

� Full expansion: A full expansion is performed at 

first p top levels, where all possible candidates are 

retained to the following detection levels. 

� Single expansion: Perform a single search process 

up to remaining levels (Nt − p), where only one 

candidate per node having lowest metric is 

considered for next layers. 

 In FSD detection process the columns of H 

must be ordered as the first p levels then the signal has 

the largest post-processing noise amplification. Mean 

while remaining (Nt − p) levels sorted based on their 

reliability with least amplification noise has been 

detected first. 

 The conventional FSD has a fixed complexity 

however it does not take into consideration the noise 

and channel conditions. In [Xiong et.al., 2009], a 
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simplified version of the FSD has been proposed by 

introducing the path selection of the remaining levels. 

FSD algorithm can be highly parallelized and fully 

pipelined. Several implementations of FSD have been 

reported in [Barbero and Thompson, 2006 & Khairy 

et.al., 2009]. 

PERFORMANCE SIMULARION RESULTRS 

AND DISCUSSION 

Simulation Parameter 

 In this section, we compare the uncoded BER 

performance of the most prominent hard-decision 

detection algorithms. The simulation results performed 

on 4×4 MIMO systems with QAM under Rayleigh 

fading channel, randomly generated Rayleigh fading 

channel with zero mean and unit noise variance. The 

simulation parameters are shown in Table 1. 

 The performance of spatial multiplexing (SM) 

MIMO system can be defined in terms of bit error rate 

(BER), therefore energy per bit information bit Eb/N0 is 

defined as 

1
10

10

E Eb s log
N N QNo o t

= +

 

BER Performance  

 Figure 5 shows that the performance 

comparison of linear detectors in 4×4 MIMO system 

with 4-QAM, 16-QAM and 64-QAM modulation 

schemes. We show that the ML detector is obviously 

the optimum one and achieves a full diversity order 

equal to Nr = 4. The SD is used the ML solution in the 

case of 16-QAM and 64-QAM. MMSE detector shows 

better BER performance than ZF but both shows a same 

diversity order equal to one. Moreover, the gain of 

MMSE over ZF is reduced with a high-order 

modulation (64-QAM). In general, linear detectors 

present significant performance loss compared to the 

ML detector. 

 

 (a) 4-QAM  

 

(b) 16-QAM 

 
(c) 64-QAM 

Figure 5: BER Performance of a 4×4 uncoded 

MIMO system of linear detectors using 3 

constellations: (a) 4-QAM, (b) 16-QAM, (c) 64-

QAM. 
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Table 1: Simulation Parameters 

MIMO System 4 × 4 Spatial multiplexing 

Modulation 2Q-QAM 4-QAM,16-QAM & 64-

QAM 

Channel type Rayleigh fading 

MIMO Detector ZF, MMSE 

SIC-ZF, SIC-MMSE, 

OSIC-ZF 

OSIC-MMSE, SQRD 

SD, K-Best, FSD 

Channel decoder Rc = 1 uncoded 

 

 In Figure 6 illustrated that BER performance 

of SIC detectors. SIC detectors are either based on V-

BLAST algorithm with or without ordering (SIC or 

OSIC), or based on SQRD algorithm (SQRD). The SIC 

detectors achieve better performance compared to linear 

detectors as shown in Figure 5, but still show 

significant performance degradation in the high SNR 

compared to ML detector. We also shows that the 

ordering of symbol used to improvement of BER 

performance for both SIC-ZF and SIC-MMSE 

algorithms.  

 This improvement is better in the case of SIC-

MMSE which indicates less error propagation 

compared to SIC-ZF. Furthermore, it is interesting to 

note that with the increase of modulation order, the 

improvement is reduced. Moreover, BER performance 

of SQRD and SQRD-MMSE based detectors is 

depicted in the case of 4-QAM and 64-QAM. 

Obviously SQRD-MMSE has better performance than 

SQRD. As SQRD-MMSE does not assure the optimal 

order, a performance gap between SQRD-MMSE and 

OSIC is observed. 

 Despite of layer ordering, none of these 

algorithms achieves full diversity order. Their diversity 

order lies between Nr − Nt + 1 = 1 and Nr = 4 and 

converges approximately to one for high SNR. SQRD-

based detection has much lower computational 

complexity than the V-BLAST algorithm with a 

tolerable degradation in BER performance especially in 

case of high-order modulation.  

 
 (a) 4-QAM  

 
(b)16-QAM 

 
(c) 64-QAM 

Figure 6: BER Performance of a 4×4 un-coded 

MIMO system of SIC detectors using 3 

constellations: (a) 4-QAM, (b) 16-QAM, (c) 64-

QAM. 
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CONCLUSION 

 In this paper, we have investigated different 

MIMO detection algorithms including linear detection, 

interference cancellation and tree-search based 

detection. Their associated advantages and drawbacks 

have been presented and discussed. We have finally 

compared their performance with different modulations.  

Until now, only hard-decision MIMO detection is 

considered in which the detector delivers a hard 

estimates of the transmitted symbols. However, in the 

case of channel coding, the performance of the system 

can be further improved by using soft-decision values. 

This soft information can be iteratively exchanged in 

order to achieve near capacity. 
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