Original Research Article

ISSN: 0976-2876 (Print) ISSN: 2250-0138 (Online)

Accepted: 03-08-2019

STUDY OF BIOLOGICAL DIVERSITY WITH PARTICULAR REFERENCE TO MACROPHYTES FLORA OF MANIKA MANN OF MUZAFFARPUR, BIHAR

RAGINI KUMARI^{a1} AND POONAM SINHA^b

^aDepartment of Botany, M.D.D.M. College, Muzaffarpur, Bihar, India ^bUniversity Department of Botany, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India

ABSTRACT

Manika Mann is a perennial water body and therefore, different hydrophytes and algal flora constitute a rich biodiversity. As the Mann is surrounded by the agricultural lands so the pond water is enriched with different nutrients that promote growth of different kinds of macrophytes and diverse algal flora. During seasonal survey, the epihydates, helophytes, hyperhydate, plankton, pleustophytes, rosulates, vittate of macrophytes were found. During rainy season the bed of the Mann is completely filled with rain water as well the runoff water from the surrounding. During this seasons only floating macrophytes, such as *Eicchornia*, *Lemna*, *Ipomoea* spp, were found on the surface. From Octobed to December, *Trapa*, *Euryal ferox*, *Eicchornia*, *Pistia* were noted on the surface, while in the water, few feet deep, *Ceratopyllum*, *Vallisneria*, *Hydrilla* etc. were noted. During this period near the bank, *Colocasia*, wild species of *Poaceae*, members of *Cyperaceae* were found. During summer the water depth is reduced and is present in the bed only. The marshy and moist marginal land was occupied by Sedge grass and members of *Poaceae*.

KEYWORDS: Manika Mann, Biodiversity, Macrophytes, Euryale, Sedge grass, Wild Species of Poaceae

Manika Mann of Muzaffarpur, Mushahari Block is situated at geographical coordinates at 26⁰7'0" North and 85⁰24'0" East. It is 8 KM away from the district headquarter of Muzaffarpur. This Mann is a perennial source of water. The main source of water is the rain fall, but due to its depth even in summer water is present, although the level of water is low and restricted to the bed side.

However, in rainy seasons, water comes from the surrounding as the Mann has lower level than the surrounding. Due to this in different season's different Macrophytes flora are found.

From the survey of literature, it was observed that aquatic macrophytes have been studied in different parts of India. Some of them may be cited here such as: Gopal and Goel (1993), Thakur *et al.*, (1995), Bandyopadhyay and Kumar (2001), Bandyopadhyay and Mukherjee (2005), Paresh and Bill (2006), Bhat *et al.*, (2007), Adhikari and Babu (2008), Narain and Mishra (2008), Sujana and Sivaperuman (2008), Kumar (2010), Mishra *et al.*, (2012), Singh and Satyanarayan (2012), Kumar and Prabhakaran (2013), Mishra and Narain (2014), Kumar and Chelak (2015), Patel and Patel (2016), Singh and Kumari (2017), Swamy *et al.*, (2016), Kuldeep and Acharya (2018). These workers have made survey of fresh water ponds and

presented the list of aquatic macrophytes found in their studies.

However, we do not get reports regarding studies of Manika Mann, with respect to biodiversity of macrophytes & flora. Keeping these ideas in mind the present work was carried out in different seasons and the macrophytes & flora were studied. The details have been mentioned in the chapter Materials and Methods.

MATERIALS AND METHODS

Seasonal survey of Manika Mann was done to locate the presence of different macrophytes belonging to lower groups that were non-flowering plants as well the flowering plants belonging to Dicot and Monocot groups. The plants belonging lower groups were identified on the basis of morphology and the reproductive parts. The plants belonging to dicotyledons were identified with the help of, Haines flora Vol (I-IV). In case where the species was not identified they were simply identified up to genus. In different seasons there was different habitat and naturally different plants species belonging to different groups were detected. Here the flowering plants were grouped on the basis of their growth form and habitat conditions, as proposed by Cook (1996), reported by Bandhopadhyay and Mukherjee (2005).

¹Corresponding author

Epihydate

All such plants where roots were anchoring with the substratum and leaves or stems were floating just above the surface, meaning thereby they were not raised above the water surface. So here the plants had contact with soil, water and air.

Helophytes

All such hydrophytes that can tolerate longer periods of submergence but are not specialized physiologically.

Hyperhydate

Here roots penetrate the substratum but leaves or stems emerging above the water surface. So such plants have contact with soil, water and air.

Plankton

They occupy the zone between the bottom and the lower surface of water. So they are free swimming below the water surface.

Pleustophyte

Plants free floating on the surface of water. They are neither attached or penetrate the substratum.

Rosulate

Here plants are submerged, rooted in substratum and leaves are borne in rosette.

Tenagophyte

Plants with juvenile stage submerged in or floating on water and the adult at the flowering stage becomes terrestrial.

Vittate

Plants submerged, rooted in the substrate, leaves along the elongated stem.

List of Species

During survey of the Manika Mann, four members of Pteridophytes such as: *Equisetum*, *Marsilea*, *Azolla* and *Pteris* were located (Table-1).

Similarly, different forms of aquatic plants were identified in different seasons. These hydrophytic plants have been grouped as suggested by Cook (1996).

Similarly, aquatic plants belonging to dicotyledons and monocotyledons were identified, along with their families genus and species. They have been arranged in the table 2.

List of macrophytes found during survey of different seasons of Manika Mann. (Table 3)

Table 1: Members of Pteridophytes

Pteridophytes:	Equisetum spp.		
	Marsilea minuta		
	Azolla pinnata		
	Pteris		

Table 2: Angiospermic Macrophytes Dicotyledons

Sr. No.	Species	Families	
1	Achyranthes aspera	Amaranthaceae	
2	Alternanthera sessilis	Amaranthaceae	
3	A. Polygonoids	Amaranthaceae	
4	Alternanthera spp.	Amaranthaceae	
5	Amaranthus spinosa	Amaranthaceae	
6	Bacopa monnieri	Scrophulariaceae	
7	Bacopa procumbens	Scrophulariaceae	
8	Centella asiatica	Apiaceae	
9	Hydrocotyle spp.	Apiaceae	
10	Cassia tora	Caesalpinaceae	
11	Eclipta procombens	Asteraceae	
12	E. Alba	Asteraceae	
13	E. Prostrata	Asteraceae	
14	Euphorbia hirta	Euphorbiaceae	
15	Euphorbia prostrata	Euphorbiaceae	
16	Heliotropium indicum	Boraginaceae	
17	Heliotropium spp.	Boraginaceae	
18	Caesulia axillaris	Asteraceae	
19	Ipomoea aquatica	Convulvulaceae	
20	Ipomoea spp.	Convulvulaceae	
21	I. cornea	Convulvulaceae	
22	Justicia simplex	Acanthaceae	
23	Cleome gynandra	Capparidaceae	
24	Ceratophyllum demersum	Ceratophyllaceae	
25	Ageratum conizoides	Asteraceae	
26	Boerhaavia diffusa	Nyctagenaceae	
27	Lippia nodiflora	Verbenaceae	

	3.6.1		
28	Malvestrum	Malvaceae	
	tricuspidatum		
29	Nelumbo nucifera	Nelumbonaceae	
30	Oxalis carniculata	Oxalidaceae	
31	Panthenium	A -t	
31	hyterophorus	Asteraceae	
32	Polygonum glaberum	Polygonaceae	
33	P. Plebejam	Polygonaceae	
34	Polygonum barbatum	Polygonaceae	
35	Rumex dentatus Linn.	Polygonaceae	
36	Phyllanthus niruri	Euphorbiaceae	
37	Phyllanthus spp.	Euphorbiaceae	
38	Ranunculus scleratus	Ranunculaceae	
39	Scoparia dulcis	Lamiaceae	
40	Trapa bispinosa Roxb.	Trapaceae	
41	Tridex procumbens	Asteraceae	
42	Trianthema monogyna	Aizoaceae	
43	Utricularia spp.	Lentibulariaceae	
44	Lemna purpusilla	Lamnaceae	
45	Lemna valdivians	Lamnaceae	
46	Nymphaea stellata	Nymphaeaceae	
47	N. Nonchali	Nymphaeaceae	
48	Nelumbo nucifera	Nymphaeaceae	
49	Justissia repens	Onagraceae	
50	Sesbania spp.	Onagraceae	

Table 3: AquaticMacrophytes Monocots

Sr. No.	Species	Family	
1	Commelina benghalensis Linn.	Commelinaceae	
2	Commelina nudiflora Lin	Commelinaceae	
3	Aponogetan natans Linn.	Aponogetonaceae	
4	Arum maculatum	Araceae	
5	Amorphophallus titanum	Araceae	
6	Colocacia esculenta	Araceae	
7	Hydrilla verticillata	Hydrocharitaceae	
8	Vallisneria natans	Hydrocharitaceae	
9	Carex hirta	Hydrocharitaceae	
10	Cyperus papyrus	Hydrocharitaceae	
11	C. Aritculatus	Hydrocharitaceae	
12	C. Alternifolus	Hydrocharitaceae	

13	Cirpus articulatus	Hydrocharitaceae	
14	Eleocharis dulsis	Hydrocharitaceae	
15	E. Palustris	Hydrocharitaceae	
16	C. Esculentus	Hydrocharitaceae	
17	C. Deformus	Hydrocharitaceae	
18	C. Longus	Hydrocharitaceae	
19	Cyperus bulbosus	Hydrocharitaceae	
20	C. Esculentus	Hydrocharitaceae	
21	C. Rotundus	Poaceae	
22	Cynodon dactylon	Poaceae	
23	Carex hirta	Poaceae	
24	Phragnites karka	Poaceae	
25	Sacchanum munja	Poaceae	
26	Sacchanum spontenum	Poaceae	
27	Sacchanum glagantum	Poaceae	
28	Sacchanum officinarum	Poaceae	
29	Setaria verticillata	Poaceae	
30	Eragrotis cynosuroides	Poaceae	
31	Eicchornia crassipes	Pontederiaceae	
32	Potamogeton crispus	Pontederiaceae	
33	Potamogeton nodons	Pontederiaceae	
34	Potamogeton pectinata	Pontederiaceae	
35	Pisita stratiotes	Araceae	
36	Scirpus tuberosus	Cyperaceae	
37	Scerpus spp.	Cyperaceae	
38	Najas graminea	Najadaceae	
39	Najas numor	Najadaceae	
40	Colocasia gigantea	Araceae	
41	Colocasia spp.	Araceae	

RESULTS AND DISCUSSION

In the present work survey for aquatic higher plants was done in different seasons in the Manika Mann of Muzaffarpur. During survey it was noted that the Mann has different zones in different seasons. During rainy season the entire bed was covered with water and only the banks were without water cover, but they were marshy. During winter water level went down and in between the water cover and the bank there were open land with moisture, the marshy areas and finally the water bed. In summer the marshy areas as well as water bed were much reduced while the upland areas were exposed much. Above conditioned favoured or promoted growth of different kinds of vegetations.

During survey in different season's altogether 91 plants were found in the Manika Mann during different seasons. Among them 4 were members of Pteridophytes, rest were from dicotyledons and monocotyledons. While *Equsetum* and *Marsilea* were collected from marshy areas, *Azolla* was collected from the water body that was floating on the surface of water. In December, complete red coloured free floating plant bodies, which were present in groups were detected, they were plant body of *Azolla*. Similarly, the bushes of *Pteris* were detected in marshy and shady zones of the Mann.

When the Mann was fully flooded during rainy seasons, August to September only floating macrophytes such as, *Ipomoea*, *Eicchornia*, *Pistia* and to some extent *Lemna* near the bank were noted. When the water level came down, rooted submerged and free submerged species were detected. *Hydrilla*, *Vallisneria* and *Ceratophyllum* were commonly found. During October to December the floating macrophytes such as *Trapa* and abundant *Lemna* were detected. It was observed that certain plants such as *Alternanthera sessilis*, *Lipia nodiflora*, *Bacopa monnieri*, *Polygonum* species, *Caesulia axilaris*, *Ipomoea* species, *Typha*, and *Phragmitis* were found in water logged zone, marshy places as well as in moist shady places. There were upland species which were found in the moist places only.

They were neither found in marshy soil or water logged conditions. Similarly, certain species such as well as in water logged areas of the Mann.

Aquatic species were Axolla pinnata, Ceratophyllum spp, Scirpus spp, Hydrilla verticillata, Vallisneria natans, Lemna spp, Spirodella spp, Najas spp, Nymphae spp, Eicchornia spp, Potamogeton spp, Trapa bispinosa, Utricularia and Nelumbo nucifera.

The moist aquatic species were, *Sagitaria* spp, *Typha* spp, *Bacopa monnieri*, *Polygonum* spp, *Phragmites karka*, *Marsilea quadriolia*, *Ipomoea carnea*, *Sagitaria sagitifoia* and *Colocasia*., Gopal and Goel (1993), reported allelopathy among these macrophytes.

Rest species listed here were, aquatic upland or moist upland. Here are species which can adjust water logging but can grow better in upland areas.

DISCUSSION

Aquatic macrophytes are now a day grouped into different categories. Bandhopadhyay and Mukherjee (2005), adopted classification of macrophytes proposed by Cook (1996). There are 8 growth forms such as Epihydate, Hyperhydate, Helphyte, Plankton, Pleustophyte, Rosulate, Tenagophyte and Vittate. All these forms have different adaptations to survive in submerged state, free floating, rooted floating, aquatic moist habitat, and moist upland habitats.

Aquatic macrophytes play an important role in pond ecosystem. They submerged species in rich the water body with oxygen during day time. These macrophytes take nutrients like nitrogen & phosphorus from water and thus dilute the excess of the above two nutrients in the polluted water. Similarly, they also contribute in the cycling of above two nutrients. They influence denitrifying bacteria that inhabit on the roots and shoots of these macrophytes. They also constitute the food chain of the aquatic ecosystem. Selected macrophytes act as the plant indicator, as they grow in particular types of aquatic system and thereby they indicate the health of the pond water. Species of Ipomoea also absorb heavy metal like mercury form the mercury polluted water. Death and decay of these macrophytes enrich the water of the pond that promotes growth of different beneficial algae. However, they may cause the basis for water bloom.

CONCLUSION

Aquatic ecosystem promotes growth of different micro algae and macrophytes. Here we get biodiversity and plants growing there may of great economic importance. If unwanted macrophytes are removed or their growth is controlled and species having this extra terrestrial area can be utilized for economic gain. Cultivation of Trapa and Euryale ferox (Makhana) is the best examples. Kargupta and Jha (1996) reported that from Darbhanga the export of popped Makhana costs more than 10 crore every year. So, the local farmers may get economic support if these two crops are cultivated in Manika Mann. Similarly, local people harvest the wild species of Poaceae, which are commonly called as "Gurhan, Munja" for the preparation of huts or for its repair. Most abundantly growing species of Sesbania commonly called as "Dhaincha" in water logged area of Manika Mann are used for collection of seeds and

the dried stems are used for fire wood in cooking by the local people. The seeds are sold at good price. These seeds are sown and plants are used for green manure. In this way this water body may be a boon for the locals if it is managed and utilized properly.

ACKNOWLEDGEMENT

The authors are grateful to the Head, Department of Botany for providing laboratory and library facilities during the work.

REFERENCES

- Adhikari B.S. and Babu M.M., 2008. Floral diversity of Baanganga wetland, Uttrakhand, India. Check List, 4(3): 279-290.
- Bandyopadhyay and Mukherjee S.K., 2005. Diversity of aquatic and wetland vascular plants of Koch Bihar District, West Bengal. Plant Taxonomy: Advances and Relevance ED. Pandey A.K., Jun Wen and J.V.V. Dogra pp. 223-244.
- Bandyopadhyay N.N. and Kumar A., 2001. Floristic survey of wetland of Patna. Proc. Nat. Symposium on Biodiversity Patna University, Patna, pp. 63-64.
- Bhat F.A., Mahdi M.D. and Yousuf A.R., 2007.

 Macrophytic associations in lotic habitats of
 Kashmir, Himalaya. J. Res. Dev., 7: 59-66.
- Gopal and Goel, 1993. Competition and allelopathy in aquatic plant communities. Bot. Rev., **59**: 155-210.
- Haines H.H., 1920-25. The Botany of Bihar and Orissa, Vol. (I-IV), London.
- Kargupta A.N. and Jha V., 1996. Makhana (*Euryal ferox*) an aquatic crop with high potential. The Botanica, pp-47-54.
- Kumar A., 2010. Macrophytes of the inland water bodies of Patna. J. Ind. Bot. Soc., **89**(182): 213-216.
- Kumar S. and Chelak E.P., 2015. Survey of macrophytic diversity in different ponds of Ongargarh city, Chhattisgarh. J. Env. Sci. Toxicology and Food Technology, 1(1): 57-59.
- Kumar S. and Prabhakaran J., 2013. Aquatic floral populations in Nameanami lake, command area,

- Tamilnadu, India. Int. Jour. of Curr. Biotech. 6: 1-8
- Kuldeep R. and Acharya V., 2018. Survey of aquatic plants of Kanker District, Chhattisgarh, India, 33(1): 51-58.
- Mishra S. and Narain S., 2014. Aquatic and Marshy angiospermic diversity of Eastern Uttar Pradesh. Int. Journ. Plant. Sci., 3(2): 63-65.
- Mishra M.K., Panda A. and Sahu D.B., 2012. Survey of useful wetland plants of South Odisha, India. Indian J. of Trad. Knowledge, 11(4): 658-666.
- Narain S. and Mishra S., 2008. A list of aquatic and marshy plants of Bundelkhand region, U.P., India. Indian Journal of Forestry, **31**(2): 301-308.
- Paresh L. and F. Bill., 2006. Environmental influences on aquatic plants in fresh water ecosystems. Environ. Rev., 14: 89-136.
- Patel N.B. and Patel K.B., 2016. Floristic account of aquatic and wetland Angiosperms of Sabarkantha, District, Gujrat. Int. Journ. of Bot. Stud., 1(4): 29-31
- Singh S.M. and Satyanarayan, 2012. Diversity of aquatic and wetland macrophytes in Keetham Lake, U.P., India. Phytotaxonomy, **12**: 181-186.
- Singh S.P. and Kumari B., 2017. A preliminary survey of aquatic Angiospermic of district J.P. Nagar, U.P., with special reference to their economic importance. Int. J. of Appl. And Pure Sci. and Agri., 3(6): 1-6.
- Sujana C. and Sivaperuman C., 2008. Preliminary studies on flora of Kole wetland, Thrisur, Kerala. Indian Forester, **134**(8): 1079-1086.
- Swamy J., Chandramohan K. and Bhadraiah B., 2016. An inventory of aquatic and wetland plants of Pocharam Lake, Medak District, Telangana. Asian Journal of Plant Science and Research, 6(3): 87-91.
- Thakur L.K., Chaudhary B. and Thakur N.K., 1995. Aqua crops of Darbhanga district in North Bihar and their commercial significance. J. of the Indian Fisheries Association, 25: 107-111.