
Indian J.Sci.Res. 17(2): 198-203, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

1
Ch.Swathi,

2
B.Indira Priyadarshini ,

3
S.Upender

1
Electronics and Communication Engineering, NRI Institute of Technology,Vijayawada

2
Electronics and Communication Engineering, Matrusri Engineering College, Hyderabad.

2
Electronics and Communication Engineering, Vidya Jyothi Institute of Technology, Hyderabad.

Abstract -Recently, Field Programmable Gate Array (FPGA) technology has become a viable target for the implementation

of algorithms suited to video image processing applications. The unique architecture of the FPGA has allowed the

technology to be used in many such applications encompassing all aspects of video image processing. The goal of this

paper is to develop FPGA realizations of three such algorithms on two FPGA architectures.As image sizes and bit depths

grow larger, software has become less useful in the video processing realm. Real-time systems such as those that are the

target of this project are required for the high speeds needed in processing video. In addition, a common problem is dealing

with the large amount of data captured using satellites and ground-based detection systems. DSP systems are being

employed to selectively reduce the amount of data to process, ensuring that only relevant data is passed on to a human

analyst. Eventually, it is expected that most video processing can and will take place in DSP systems, with little human

interaction. This is obviously advantageous, since human data analysts are expensive and perhaps not entirely accurate.

Keywords -Image, VHDL, DSPSYSTEM,FPGA, Algorithm.

I. Introduction

 There are several different choices a designer has

when implementing a DSP system of any sort.Hardware,

of course, offers much greater speed than a software

implementation, but one must consider the increase in

development time inherent in creating a hardware design.

Most software designers are familiar with C, but in order

to develop a hardware system, one must either learn a

hardware design language such as VHDL or Verilog, or

use a software-to-hardware conversion scheme, such as

Streams-C , which converts C code to VHDL, or MATCH,

which converts MATLAB code to VHDL. While the goals

of such conversion schemes are admirable, they are

currently in development and surely not suited to high

speed applications such as video processing. Ptolemy is a

system that allows modeling, design, and simulation of

embedded systems. Ptolemy provides software synthesis

from models.) .While this type of system may be a

dominant design platform in the future, it is still under

much development, meaning that it may not be a viable

design choice for some time. A discussion on the various

viable options for DSP system design is found below.

II. Literature review

 Signal processing programs used on a PC allow for

rapid development of algorithms, as well as equally rapid

debug and test capabilities. It is common for many

hardware designers to use some sort of PC programming

environment to implement a design to verify functionality

prior to a lengthy hardware design. MATLAB [6] is such

an environment. Although it was created for manipulating

matrices in general, it is well suited to some image

processing applications. MATLAB treats an image as a

matrix, allowing a designer to develop optimized matrix

operations implementing an algorithm. However, if the

eventual goal is a hardware device, the algorithms are

instead often written to operate similarly to the proposed

hardware system, which results in an even slower

algorithm. Systems such as IDL andits graphical

component ENVI are more specifically geared to image

processing applications, and include many pre-written

algorithms commonly used to process images. However,

even specialized image processing programs running on

PCs cannot adequately process largeamounts of high-

resolution streaming data, since PC processors are made to

be for general use. Further optimization must take place on

a hardware device.

 Application Specific Integrated Circuits (ASICs)

represent a technology in which engineers createa fixed

hardware design using a variety of tools. Once a design

has been programmed onto an ASIC, it cannot be changed.

Since these chips represent true, custom hardware, highly

optimized, parallelalgorithms are possible. However,

except in high-volume commercial applications, ASICs are

oftenconsidered too costly for many designs. In addition, if

an error exists in the hardware design and is notdiscovered

before product shipment, it cannot be corrected without a

very costly product recall.

III. Design Approach

 Prior to any hardware design, the author chose to

create software versions of the algorithms inMATLAB.

Using MATLAB procedural routines to operate on images

represented as matrix data, thesesoftware algorithms were

designed to resemble the hardware algorithms as closely as

possible. While ahardware system and a matrix-

manipulating software program are fundamentally

different, they can produce identical results, provided that

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

Indian J.Sci.Res. 17(2): 198-203, 2018

care is taken in development. This approach was taken

because it speeds understanding of the algorithm design. In

addition, this approach facilitates comparison of the

software and synthesized hardware algorithm outputs,

allowing detailed error calculations. This project was

targeted for FPGA systems for two reasons. One, the

author had some previous experience in FPGA

implementations of video processing algorithms . Two,

FPGAs represent a VHDL design environment and the

FPGA-specific tools. In the first state, a design is created

in VHDL. Next, the code’s syntax is verified and the

design is synthesized, or compiled, into a library. The

design is next simulated to check its functionality.

Stimulating the signals in the design and viewing the

outputwaveforms in the VHDL simulator allows the

designer to determine proper functionality of the design.

Next, the design is processed with vendor-specific place-

and-route tools and mapped onto a specific FPGA in

software. This allows the engineer to view a floorplan and

hierarchical view of the design, which can help verifying a

proper mapping procedure. Next, the design is verified for

proper functionality once again. This step is important

because it assures that the design is correct in its

translation from Verilog to gatelevel.

 If this is found to be correct, the design can then be

programmed onto the specified FPGA. For this project, the

author had access to two FPGAs, each from a different

company and each with different design tools: the Altera

FLEX 10K100 and the Xilinx Virtex XCV300.: patterns

and classes are characterized by formal structures. In these

methods, the basic units are defined as Primitive. All

models are expressed in terms of the inter relationships

between Primitive Grammar. In most cases, these methods

are applied to certain structural pattern.

 ANN:Artificial neural networks, each pattern are

described in terms of several characteristics. Point’s

attributes are considered in a multidimensional space.

Feature space is divided into several regions corresponding

to each class. Pre specified classes in supervised

classification by training data determine the boundaries of

different classes, there confirm the marked areas. Template

feature vector obtained through measurement or

observation.

 Due to architecture differences, the Altera FLEX

10K series is termed a Programmable Logic Device (PLD)

and is not officially considered to be an FPGA. However

for the purpose of simplicity it is commonly referred to as

an FPGA, and will be so named in this document. The

FLEX 10K100 is a CMOS SRAM-based device,

consisting of an embedded array for memory and certain

logic functions and a logic array for general logic

implementation. The embedded array is constructed of

Embedded Array Blocks (EABs). The EABs can be used

to implement limited memories such as First In First Out

(FIFO) or RAM units. The FLEX 10K100 has 12 EABs,

each with 2048 bits for use in a design.The logic array in

the FLEX 10K series is built from Logic Array Blocks

(LABs). Each LAB consists of 8 Logic Elements (LEs),

each of which is constructed of a 4-input Look Up Table

(LUT) and a flip-flop. Each LAB can be considered to

represent 96 logic gates. The FLEX 10K100 has 624

LABs, accounting for most of its 100,000 gates (the rest

are accounted for in memory). Figure 2 shows the basic

units in a FLEX 10K LE. Input/output functionality on the

FLEX 10K series is handled in the Input/output Blocks

(IOBs).

 Each IOB has one flip -flop to register either input

or output data. However for bi-directional signals, this is

an inefficient design, since two flip -flops are needed and

only one is available in the IO B. The second flip-flop

must be implemented in the logic array, resulting in an

overall slower design .a floor plan view of the Altera

FLEX 10K architecture, highlighting the elements

discussed.

IV. Methodology

 This project was focused on developing hardware

implementations of three popular image processing

algorithms for use in an FPGA -based video processing

system. This chapter discusses thesealgorithms and their

software implementations in MATLAB.In image

processing, several algorithms belong to a category called

windowing operators.

 Windowing operators use a window (shown in Fig

1), or neighborhood of pixels, to calculate their output. For

example,windowing operator may perform an operation

like finding the average of all pixels in the neighborhood

ofa pixel. The pixel around which the window is found is

called the origin.

Fig:1 Pixel window and origin

 The work for this project is based on the usage of

image processing algorithms using these pixelwindows to

calculate their output. Although a pixel window may be of

any size and shape, a square 3x3size was chosen for this

application because it is large enough to work properly and

small enough toimplement efficiently on hardware. This

filter works by analyzing a neighborhood of pixels around

an origin pixel, for every valid pixel in an image. Often, a

3x3 area, or window, of pixels is used to calculate its

output. For every pixel inan image, the window of

neighboring pixels is found. Then the pixel values are

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

Indian J.Sci.Res. 17(2): 198-203, 2018

sorted in ascending, or rank, order. Next, the pixel in the

output image corresponding to the origin pixel in the input

image is replaced with the value specified by the filter

order. The rank order filter can be represented by the

following lines of pseudo-code:

Order = 5 (this can be any number from 1 -> # pixels in

the window)

for loop x –> number of rows

for loop y –> number of columns

window_vector = vector consisting of current window

pixels

sorted_list = sort (window_vector)

output_image(x,y) = sorted_list(order)

end

end.

Fig 2shows an example of this algorithm for a median

filter (order 5), a filter that is quite useful in salt -and-

pepper noise filtering . Since the rank order filter uses no

arithmetic, a mathematical

description is difficult to represent efficiently.

Low 10

50 10 20

30 70 90

40 60 80

high 90

Fig: 2Graphic depiction of rank order of filter

 As is evident in the above fig 2, it is possible to use

any or der up to the number of pixels in the window.

Therefore a rank order filter using a 3x3 window has 9

possible orders and a rank order filter using a 5x5 window

has 25 possible orders. No matter what the window size

used in a particular rank order filter, using the middle

value in the sorted list will always result in a median filter.

Similarly, using the maximum and minimum values in the

sorted list always results in the flat dilation and erosion of

the image, respectively. These two operations are

considered part of the morphological operations,.

V. MATLAB Implementation

 The PC software program MATLAB was used to

develop an initial version of the rank order filter,so that its

operation could be verified and its results could be

compared to the hardware version. WhileMATLAB offers

features that speed up operations on matrices like images,

custom operations were used so that the software would

closely mimic the functionality of the proposed hardware

implementation n. The MATLAB implementation of the

rank order filter is called ro_filt.m. It works by using for

loops to simulate a moving window of pixel

neighborhoods. For every movement of the window, the

algorithm creates a list of the pixel values in ascending

order. From this list, the algorithm picks a specific pixel.

The pixel that is chosen from the list is specified in the

order input. The output of the program is an image

consisting of the output pixels of the algorithm. Since a

full 3x3neighborhood is used in this implementation, the

window must have gotten to the second line of the input

image in order to create an output. The result of this is that

some ‘edge effects’ occur in the output image, meaning

that there is always an invalid strip along the borders of the

output image. This is true for all algorithms using the

windowing approach to image processing. Figure shows

some example output images for a given input image using

ro_filt.m. From this figure it is easy to observe the effect

that the rank order filter has on an image, given the various

algorithm orders use.

Fig:3Input image

Fig : 4 Filtered image order-2

Fig : 5 Filtered image order-5

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

Indian J.Sci.Res. 17(2): 198-203, 2018

 The focus of this project is the actual

implementation of the proposed algorithms on target

FPGA hardware. As discussed in previous chapters, this

was accomplished by composing the algorithms in the

Verilog HDL language and synthesizing the algorithms for

the FPGAs. This chapter discusses the hardware design

specifics for each algorithm. The rank order filter was the

first algorithm to use the window_3x3 pixel window

generator. Since its operation is fairly simple, it was an

ideal choice. As discussed above, the rank order filter must

first sort the pixel values in a window in ascending (or

rank) order. The most efficient method accomplishing this

is with a system of hardware compare/sort units, which

allow for sorting a window of nine pixels into an ordered

list for use in the rank order filter.This system results in a

sorted list after a latency of 14 clock cycles. Since the

design is pipelined, after the initial latency the system

produces a valid sorted list on every clock cycle. The

Verilog HDL algorithm which implements this design,

sort_3x3.v, is really just a series of registers and compares,

as is shown if Fig6. Not all levels of the sorting algorithm

are shown to conserve space.

Fig : 6 VHDL and MATLAB Comparison Plots for

ro_filt_3x3 with Order = 4

 The VHDL rank order filter design has been

synthesized for both the Altera and Xilinx architectures.

Since the Xilinx Virtex is a newer generation FPGA, it

was expected that it would provide superior performance

over the Altera FLEX 10K F PGA. This surmise was true,

and was a constant throughout the design.

VI. Convolution

 The design of the convolution algorithm in VHDL

was a much more difficult problem than the rank order

filter design. This was due to its use of more complex

mathematics. For example, the rankorder filter really just

sorts the pixels in a window and outputs one of them,

while the convolutionalgorithm uses adders, multipliers,

and dividers to calculate its output. On FPGAs, use of

mathematicstends to slow down performance. Many

designers favor techniques that reduce the algorithm’s

dependency on complex mathematics. Still, since the

mathematics used in convolution are simple,

implementation of a convolution algorithm was an

achievable goal.Yet another obstacle in this algorithm’s

design was implementing the capability to handle negative

numbers. In a proper convolution algorithm, the mask can

(and often does) consist of negative numbers. Effectively,

the Verilog HDL had to be written to handle these

numbers by using signed data types. Signed data simply

means t hat a negative number is interpreted into the 2’s

complement of its non -negative dual. This means that all

vectors within the design must use an extra bit as

compared to unsigned numbers. The extra bit always

carries the sign of the number – 0 for a positive number, 1

for a negative number.

 Because of this, the output of the convolution

algorithm is a number in 2’s complement. In orderfor

another unit to interface data from this algorithm, the unit

must be able to understand or convert 2’s complement

data. Fortunately, this is a simple matter in the ACS

system, Addition and multiplication were instantiated

using simple + and * signs in the VHDL code. The VHDL

synthesis tool provides mapping to efficient hardware

mathematics designs for each of these, sodevice-specific

parameterized modules were not necessary. Since a proper

convolution involves a division by the number of pixels in

the window, some thought had to be put into this part of

the algorithm’s hardware implementation. Hardware

dividers on FPGAs are quite large and slow. In addition

they must be tied directly to the FPGA’s architecture,

meaning that one divider would not work for both

architectures pursued. It was deemed necessary to instead

use the bit shifting method of division. Since this is only

possible with powers of two, a divide by 8 was

implemented instead of a divide by 9, as was planned in

the algorithm’s design.Optimization of the convolution

algorithm can be easily achieved if one has limited

kernelspecifications. For example, if all coefficients in the

kernel are powers of two, the VHDL synthesizer is able to

result in a design that uses fewer resources. This is due, of

course, to the way numbers are represented in digital

systems, where a number that is a power of two is

represented with only one bit. Further optimization is

possible by reducing the bit widths of the kernel constants.

This is result in a smaller coefficient data range, but this

compromise may be acceptable in certain cases.

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

Indian J.Sci.Res. 17(2): 198-203, 2018

Fig : 7 Verilog HDL and MATLAB Comparison Plots for

conv_3x3 with K1 Kernel

VII. Conclusions

 The development of FPGA image processing

algorithms can at times be quite tedious, but theresults

speak for themselves. If high-speed, windowing

algorithms are desired, this paper shows that FPGA

technology is ideally suited to the task. In fact, with the aid

of the window generator, a whole series of image

processing techniques is available to the designer, many of

which can be synthesized for high–speed applications.

 One of the drawbacks of the techniques presented

in the paper is the large size of the algorithms,used in the

design. If off -chip RAM is used for FIFO operations, the

designs’ synthesized size can be greatly reduced.Also, the

stack filter method of image processing can greatly reduce

the size of algorithms using a window generator. Still, this

method achieves a more serial method of processing,

which is not entirely efficient with FPGA systems. The

design presented here is quite capable, and it tries to take

advantage of the parallelism possible with FPGA devices.

 A great deal of knowledge was gained from the

completion of this project. While FPGAs areexcellent for

some uses, such as a large number of image processing

applications, difficulties in using more complex

mathematics speak volumes towards the argument of using

dedicated DSP chips for some applications. Indeed, it is

expected that a designer who desires the best combination

of speed and flexibility should look toward a system

consisting of both FPGAs and DSPs. Such a system can

take advantage of the positive aspects of each architecture,

and can allow the designer to create an algorithm on a

system that is best suited for it. That said, it should also be

noted that this project’s algorithms were excellent choices

for FPGA implementation. This is because they don’t use

floating -point mathematics and they include no complex

mathematics.

VIII. Future Work

 The interchangeable nature of the VerilogHDL

components of this design allow for its components to be

used in different designs quite easily. For example, the

window_3x3 architecture allows it to be used in any

algorithm that uses a pixel window to compute its output.

Since VerilogHDL components can easily be instantiated

in any design, using the pixel window generator is as

simple as dropping component and portmap statements

into another VerilogHDL design. Because of this, the

applications for the code created for this project can be

used in many different image processing algorithms. With

the window generator and row/column counter code

complete, about fifty percent of the work is done and the

designer simply has to use t heir outputs to generate a

desired result. It could be said that the real result of this

project is not simply a few algorithms, but instead a

system of VerilogHDL code which allows for efficient

implementations of many algorithms. Still, these

VerilogHDL designs should be made to operate more

generically, so that modification of hard-coded values is

not necessary. A large part of the improvement possible in

this design lies in the algorithms themselves. For the rank

order filter, changing the order to be an input vector would

allow on-the-fly switching of algorithm properties. While

this does increase the synthesized size of the design, it also

maximizes its on–chip capability. Similarly, if the kernel

for the convolution design were to be changed to inputs

instead of constants in a package, the convolution

algorithm would also have increased functionality.

References

[1] Chou, C., Mohanakrishnan, S., Evans, J.: “FPGA

Implementation of Digital Filters,” Proc.

ICSPAT,1993.

[2] Benedetti, A., Perona, P.: “Real-time 2-D Feature

Detection on a Reconfigurable

Computer,”Proceedings of the 1998 IEEE

Conference on Computer Vision and Pattern

Recognition, 1998.

[3] Gokhale, M., et. al.: “Stream -Oriented FPGA

Computing in the Streams -C High Level

Language,”unpublished paper, 2000.

[4] Banerjee, N., et. al.: “MATCH: A MATLAB

Compiler for Configurable Computing

Systems,”Technical Report, Center for Parallel and

Distributed Computing, Northwestern University,

August1999.

[5] Lee, E., et. al.: “Overview of the Ptolemy Project,”

Department of Electrical Engineering andComputer

Science, University of California, Berkeley, July

1999.

FPGA IMPLEMENTATION OF AN IMAGE COMPRESSION USING VERILOG

Indian J.Sci.Res. 17(2): 198-203, 2018

[6] Mathworks, Inc.: “MATLAB 5.3 Fact Sheet,”

Natick, MA, 1999.

[7] Research Systems, Inc.: “Getting Started with IDL,”

Boulder, CO, September 1999.

[8] Research Systems, Inc.: “ENVI User’s Guide,”

Boulder, CO, July 1999.

[9] Texas Instruments, Inc.: “TMS320C4X User’s

Guide,” Houston, TX, May 1999.

[10] Moore, M.: “A DSP-Based Real-Time Image

Processing System,” Proceeding of the 6 th

InternationalConference on Signal Processing

Applications and Technology, Boston, MA, August

1995.

[11] Texas Instruments, Inc.: “C67x Floating -Point

Benchmarks,” Houston, TX, 2000.

[12] Virtual Computer Corporation: “What is

Reconfigurable Computing,” Reseda, CA, 2000.

[13] Nelson, A.: “An Implementation of t he Optical

Flow Algorithm on FPGA Hardware,”

IndependentStudy Paper, December 1998.

[14] Nelson, A.: “Further Study of Image Processing

Techniques on FPGA Hardware,” Independent

StudyPaper, May 1999.

[15] Altera, Inc.: “Altera FLEX 10K Embedded Program

mable Logic Family Data Sheet,” San Jose,

CA,1999.

[16] Xilinx, Inc.: “ XilinxVirtex 2.5V Field

Programmable Gate Array Specification,” San Jose,

CA, 2000.

[17] Andraka Consulting Group, Inc,: “Digital Signal

Processing for FPGAs,” Seminar Notes, 1999.

[18] Russ, J.: “The Image Processing Handbook,” CRC

Press, Boca Raton, FL, 1992.

[19] Hussain, Z.: “Digital Image Processing – Practical

Applications of Parallel Processing

Techniques,”Ellis Horwood, West Sussex, UK,

1991.

