
Indian J.Sci.Res. 17(2): 505 - 509, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

IMPLEMENTATION OF FPGA BASED NOC USING ADVANCED

NETWORKING TECHNIQUES

1
B.Hareesh Kumar,

2
T.Eedara Rao,

3
G.Jyothi

1,2,3
Department of Electronics and Communication Engineering, Aurora’s scientific, Technological And

Research Academy, Hyderabad

Abstract- This paper presents the design and implementation of FPGA based Network on chip (NoC) which is scalable

packet switched architecture with advanced Networking functionalities such as store & forward transmission, error

management, power management and security. All these features are built on basic NI core, which includes data

packetization/depacketisation, frequency conversion, data size conversion and conversion of protocols with limited circuit

complexity and cost.

Keywords-Network-on-Chip (NoC), Network-Interface (NI), VLSI Architectures, Intellectual Property (IP), Multi-

Processor System-on-Chip (MPSoC).

I. Introduction

Network on chip (NoC) [1] is an emerging design

technology which is used for developing a packet switched

communication infrastructure, which includes hundreds of

IP cells, connected on a single Multi-processor System on

Chip (MPSoC) [2]. NoCs provides a design methodology

for interconnect architecture for connecting hundreds of IP

cores which can be used for general purpose processors,

application specific processors, digital signal processors

and so on. Network interface (NI) will be considered as the

key element of NoC, which makes IP macrocells to be

connected to on-chip communication backbone in plug and

play fashion. These NI’s are also considered as building

blocks of the NoC. Basically NI’s takes care of data

packetization / depacketisation to and from the NoC; it

encodes all the packet header and guarantees a successful

end to end data delivery between the IP cores.

 A NoC packet consists of a header and a data

payload and they are splitted into units called as flits. And

all these flits are routed in the same path across the

Network. The header field is composed of header field is

composed of Network layer header whose content is find

out by NI, according to the node map network

configuration, and a transport layer header (TLH) which

contains the information used by the NI’s for end to end

transaction management. Some of the researchers proposed

that they can implement the conversion of the data size,

protocol and frequency between the original IP bus and

NoC. But the IP bus can be standardised one such as

AMBA (Advanced microcontroller Bus architecture), AXI

(Advanced eXtensible Interface) or OCP (Open Core

Protocol) [3] or a custom bus such as ST Bus [4].The latest

researches on the NI architecture focus on implementing

more features to directly support advanced Networking

functionalities, the challenge here in doing so is by

keeping NI area, power and latency overhead as low as

possible with respect to connected IP cores. But integrating

all these above said features with limited circuit

complexity will be difficult.

 To overcome these draw backs we have designed

and implemented a FPGA based NoC which is scalable

packet switched architecture with advanced Networking

functionalities such as store & forward transmission, error

management, power management and security.

II. Related Work And Contributions

Design and implementation of NOC with hardware

support of advanced networking functionalities on FPGA

can be defined as the framework employed to enhance

some networking functionalities, which in turn enhance the

parameters such as store and forward, security, EMU

(Error management Unit) for initiator, EMU and PM

(Power management) for target. Pier.S.Paolucci, et al [2]

proposed that nano scale systems on chip with tiled

scalable hardware and software design for future CMOS

technologies. Tiled architectures suggests a possible path

“small “processing tiles connected by “short wires” a

typical shapes tile containing a very long instruction word

(VLIW), floating point DSP, a RISC, a DNP(distributed

network processor), distributed on chip memory plus an

interface for DXM (distributed external memory). But

here, there is no processing power ceiling for low

consumption, low cost, dense numerical embedded

scalable systems for future embedded audio, video and

human -centric applications.

 Heikki Kariniemi and Jari Nurmi [5] came out with

a new approach to a NOC Interface (NI) called Micro

Switch Interface (MSI) designed for message passing

communication with a light-weight micron message

passing (MMP) protocol on micromesh MPSOC platform.

IMPLEMENTATION OF FPGA BASED NOC USING ADVANCED NETWORKING TECHNIQUES

Indian J.Sci.Res. 17(2): 505 - 509, 2018

The operation of the MSI hardware and software are

tightly coupled with that of the MMP protocol in order to

improve communication performance. But the operation of

the MSI hardware & software is tightly connected to the

operation of the MMP protocol and it cannot give

protection against packet losses and errors in the NOC and

also if modifications are made which will increase the cost

of the MSI hardware.

Srinivasan Murali et al [6] proposed that NoC’s

are necessary to efficiently handling the 3D interconnect

complexity, while satisfying the 3D technology

constraints. But fails to meet the constraints for the 3D

approach it is a great challenge for the designers. One of

the most important problems is to design the most power

performance efficient NoC topology that satisfies the

application characteristics and 3D technology

requirements.

Mohammed Anis Ur Rahman et al [7] introduced

that “Network on Chip (NoC) design paradigm, where

nodes communicate by exchanging packets through an

interconnection network, which consists of routers and

network interfaces, here 2D mesh node communication

architecture is proposed in GALS approach. While using

GALS approach the nodes has to obey some important

rules for a guaranteed better performance, also NoC is best

used in high bandwidths, large scale environment. This

limits the implementation fields and the design is not

capable of handling QoS traffic.

III. Design Of Core Network Interface

A. Top level Architecture of NI.

In NOC interface IP cores are commonly

classified as Master and Slave IPs. Initiator NIs are

connected to Master IPs, which will convert the IP request

transaction into NOC traffic, and also translates the

packets received from NOC into IP response transactions.

Similarly, Target NIs also exists, which are connected to

slave IPs, here the target NIs represents a mirrored

architecture where the requests are decoded from the NOC

and the responses are encoded.

In both NI types, two main domains are identified

Fig (1(a)) which shows the top view of an initiator NI. And

Fig (1(b)) shows the top view of the target NI, here the

shell is considered as IP specific, and Kernel in NOC

specific, where each one has its own peculiar functionality.

Fig 1. Top view of the NI design: (a) Initiator and (b)

Target

Fig 1(a) and 1 (b) highlights some advanced

networking functionalities such as programming, security,

error and power management. The main aim of the

shell and Kernel separation is to abstract IP specific

properties (such as bus protocol and data size) from NOC

side properties.

In this manner the NOC becomes an IP-Protocol

agnostic interconnect which includes protocols, bus size,

clock frequency, the master or slave IP is using and all

modules in the system may communicate with each other.

The conversion features should be implemented in

two directions, one in request path which is from master to

slave IPs and one more in response path from slave to

master respectively. Here the Kernel and all its

associated NOC interface is IP protocol independent and

its common to all possible NI’s. This supports the

following IP bus protocols. AMBA, AXI, which is a de-

facto standard in embedded systems ST-Bus type used by

ST microelectronics, DNP a distributed network processor.

Mainly used by ATMEL to build a multi-tile MPSOS

architecture.

Fig 2 highlights the shell, the Kernel and the NOC

interface respectively, and here the top of this figure

represents the request path, while the bottom part

represents the response path. The NOC interface

consists of Upstream (US) section, to transmit packet to

the interconnect, and a downstream (DS) section which

receives the packets from the NOC.

The NI shell part deals directly with the bus

protocol which implements bus specific handshaking rules

by means of dedicated Finite State Machines (FSMs).

Before passing the data to the kernel, the shell builds the

network and transport layer headers, which are required by

subsequent NOC components.

B. Kernel-Shell Interface by BI-Synchronous FIFO

The Kernel is interfaced to the shell by means of

a FIFO like interface. As Shown in figure 2, encoded data

which in coming from the shell are stored in two FIFO’s.

One is header FIFO (which holds transport layer and

network layer headers) and a payload FIFO (which holds

bus raw data). Each FIFO consists of its own read and

IMPLEMENTATION OF FPGA BASED NOC USING ADVANCED NETWORKING TECHNIQUES

Indian J.Sci.Res. 17(2): 505 - 509, 2018

write manager which will updates FIFO pointers and status

and provides frequency conversion mechanism. The

Kernel is connected to the NOC interface through two

additional FSMs. In the request path, an output FSM

(OFSM) which will reads the headers and payloads and

converts them to the packets according to the need of NOC

protocol.

Similarly in the response path, an Input FSM

(IFSM) collects the packets and splits the header and

payload flits into their respective FIFO’s. Here it should

be noted that the NI encodes both TLH and the NLH,

while decoding it takes only TLH into account, because as

already the packets have been reached the destination and

the routing data is also not required.

Fig 2: Main Blocks In NI Micro Architecture.

Bi-synchronous FIFOs are used in the NI scheme.

The frequency conversion mechanism is accomplished

between NOC and connected IP. Each read (write) FIFO

manager re-synchronizes in its own clock domain, the

pointer of the write (read) manager in the other clock

domain, hence the status of the FIFO that is empty or full

is find out using comparing synchronized pointers, and the

header and the pay load FIFO’s can be correctly managed.

To increase the robustness of the synchronization pointers

they adopt gray encoding. The read (RD) and write. (WR)

managers can access a FIFO by different basic storage

elements also, data size conversion is possible between IP

and NOC domain the conversion mechanism is carried out

by exploiting FIFO rows and columns. A FIFO location is

sized according to the larger data size between data in and

data out. A FIFO row is sized according to the smaller

data size between data in and data out as shown in Fig 3.

Fig 3: Upsize conversion in single FIFO.

Up size conversion is accomplished by writing by rows

and reading by columns and downsize conversion is

exactly opposite to that. In particular cases when Shell /

Kernel frequency conversion nor size conversion is not

required, it is possible to remove the bi-synchronous

FIFOs, by setting their size to zero, by this which will save

area and power consumption this feature is known as Zero

kernel FIFO. As to increase the maximum operating clock

frequency, an optional pipeline stages can be added at the

IP and NOC interfaces.

IV Advanced Network Interface Features

A. Store and Forward (S & F)

Kernel FIFOs in the request and response paths

contains flits, which are either received from the NOC and

to be decoded towards the IP bus, or encoded from a bus

transaction and to be transmitted over the interconnect.The

default NI behaviour is that as soon as flit is available from

the NOC it is extracted as a result the original traffic at an

interface (NOC or bus) has an irregular shape, as soon as

store and forward is enabled, flits are kept into the internal

Kernel FIFOs, until the whole packet is encoded /received

and then they are transmitted / decoded all together. In

this way an irregular traffic is converted to bubble free

traffic thus improving overall system performance.

S & F may be enabled on both request path and

response path independently, at NOC- to- bus level, it is

possible to enable per-packet S & F, while several S & F

options can be selected at NOC-to bus level. The

mechanism of handling pre-packet S&F implementation is

quite simple, after completion of a packet, the FSM

controlling the FIFOs reading is in a state where only the

header FIFO is checked , to extract the beginnings of the

new packet. Here the concept to handle per-packet S & F,

in both directions is to keep packet header hidden to the

reading logic by simply not updating the header FIFO

write pointer. When the entire packet is stored in the

FIFO (both header and payload), the header is unmasked

and made visible by updating the header FIFO pointer, and

the reading logic detects the presence of a new packet.

The management of the bus-to-NOC store and

forward compound transactions is bit more complex, as the

compound transactions consists of number of packets, that

is number of headers, the header write pointer must

constantly updated upon arrival of any new packets, to

avoid overwriting the previous one, therefore the headers

become visible to the reading logic. Here the concept is

that a field in the header that to mark the packets header as

“hidden” (the first packets of compound transaction) or

“visible” (only last packets of the compound transaction)

the reading logic evaluates this field, in each header and

starts extracting the FIFO’s content only when the last

packet of the compound transaction is detected in the

FIFO.

IMPLEMENTATION OF FPGA BASED NOC USING ADVANCED NETWORKING TECHNIQUES

Indian J.Sci.Res. 17(2): 505 - 509, 2018

Fig 4. Advanced Features In A NI Initiator.

B.Error Management Unit (EMU)

The EMU is an optional stage which can be

implemented between the Kernel and NOC interface. The

behaviour of the EMU is different for both initiator and

target NIs. In an initiator NI the EMU can handle bad

address errors and security violations. When the address of

the master IP transaction is not in the range of assigned

memory map, or when the transaction is trying to access

the protected memory zone without having permission the

packet in its header is flagged as an error packet.

Fig 5: EMU And Power Manager In Target NI.

In the later stages the EMU filters the packet directed to

the NOC US-interface to avoid it to enter the network, and

creates a response packet. Which remaps the request

header on a new response header, and if required adds a

dummy payload.The EMU also take care of properly

managing the incoming traffic at the DS NOC interface

during the power down mode. All the traffic which is

received in request during power down mode is flushed by

the EMU, so that it never reaches the slave IP.

 The EMU itself generates an error response to the

master originating the request. As shown in Fig 5, the

EMU is composed of 3 blocks which are

Error detector, which flushes all error traffic. In Initiator

NIs, the outgoing error traffic is identified by a flag in the

header, while in Target NIs all incoming packets are

flushed if the connected Slave IP is in power down mode;

Error encoder, which assembles a new NoC packet to be

channelled in the response path;

Error write manager, which is basically a traffic-light to

avoid simultaneous traffic to the US NoC Interface from

Kernel Response and from the EMU in a Target NI, while

in an Initiator NI it avoids interference between the DS

NoC Interface and the EMU both trying to access the

Kernel Response.

If a request packet does not contain an error, the EMU

behaves transparently and does not add any clock cycles of

latency.

C.Power Manager (PM)

 This feature is available only for Target NIs

connected to slaves which may be turned off to save

power. The PM is always coupled to an EMU block which

rejects incoming NoC packets trying to access the Target

NI when the connected slave IP is in power down mode as

shown in fig 5. A simple req/ack protocol controls the

power up/down state of the NI, by means of a dedicated

interface: each request (req set to 1) acknowledged by the

PM unit (ack set to 1) makes the NI power state switch

from UP to DOWN and vice versa. It may happen that a

request for power down is sent to the PM while the slave

IP is still elaborating a number of pending transactions. In

this case the Target NI stops accepting packets from the

network and waits for all pending transactions to be

processed before acknowledging the request and switching

to power down mode. The power manager is a completely

new feature introduced by the proposed NI.

D. Security

 The security service, available only in NI Initiators,

acts as a hardware firewall mechanism. It introduces a set

of rules that transactions coming from the Master IP must

satisfy to gain access to the network. The security rules

involve:

i. Lists of memory intervals under access control;

ii. Lists of Master IPs that may have access to a

certain memory region;

iii. Lists of access types.

 Security rues are applied in the Security block

during packet encoding. If a test fails the security check,

the corresponding transaction is marked as an error in the

NLH and it is detected by the EMU, which must be

activated as well to properly manage security violations.

The illegal packet is then discarded and does not consume

network bandwidth, and the error response to the Master

IP is directly generated by the EMU itself. The rules that

allow a transaction to access the network are described by

means of a security map. In this map a number of memory

regions are defined, and associated to region IDs the same

map defines how these regions can be accessed. Access to

IMPLEMENTATION OF FPGA BASED NOC USING ADVANCED NETWORKING TECHNIQUES

Indian J.Sci.Res. 17(2): 505 - 509, 2018

these zones can be allowed only to Master IPs belonging to

specified groups. Source and for each protected region

depending on the address and the Source, the memory

access can be immediately allowed or immediately denied,

or go through a security rule check. Naturally, there is also

a control to block malicious memory accesses to a non-

protected zone that transfer a number of bytes such that the

operation overflows in a protected region.

A region can be any sub range of the address

space in the whole system interconnected by the network.

The security map may be statically defined at design time

or changed dynamically through the programming

interface; in the latter case the NI programming interface

must be configured to instantiate the registers related to the

security category. The implemented security mechanism

supports up to 8 protected memory regions, up to 8 access

rules with Read/Write/Execution permissions, up to 16

Source groups to classify Masters.

V. NOC Implementation Results

A. NI configuration space.

The proposed NI is designed to support a wide

configuration space, not only the advanced feasters can be

enabled or disabled, also some of the basic characteristics

can be configured like flit size, bus data size, pay load &

header FIFO size, conversion of frequency and data size.

By changing the configurations set different trade-offs

between performance and complexity are achieved.

B. Verification and synthesis flow.

The exact functionality of the proposed NI design

in multiple configurations has been verified at different

abstractions levels.First a random functional verification

environment has been created and applied to multiple

configuration of HDL database.

The various building blocks of the NOC are

exploited using verilog HDL language and Xilinx ISE tool.

Which is a software tool produced by xilinx for synthesis

and analysis of HDL designs, which enables the developer

to synthesize (Compile) their designs, perform timing

analysis, examine RTL diagrams, simulate a design’s

reaction, and it is simulated and debugged using modelsim

and the simulation waveform can be obtained which will

be further useful for analysis.The NI data base is verified

and validated at different level by both synthesis and

simulation. Finally, the design is configured on SPARTAN

3 family FPGA kit with the help of Verilog HDL.

VI. Conclusion

 An advanced design of Network interface for on

chip communication has been presented in this paper ,the

proposed design supports a wide set of with advanced

networking functionalities such as store & forward

transmission, error management, power and security. The

capability to support all these above said features in the

same hardware reduces the complexity overhead.The

proposed Network interface represents a complete solution

which can be used in different scenarios from real time

applications to multimedia broadcasting based on the

system requirements by modifying some features to obtain

an optimised hardware description.

References

[1] NoC Advantages for SoC Prototyping on Big FPGA

BoardsJonah ProbellArteris, Inc jonah@arteris.com

[2] P. S. Paolucci, F. LoCicero, A. Lonardo, M. Perra,

D. Rossetti, C. Sidore, P. Vicini, M. Coppola, L.

Raffo, G. Mereu, F. Palumbo, L. Fanucci, S.

Saponara, and F. Vitullo, “Introduction to the tiled

HW architecture of SHAPES,” in Proc. Design,

Automation and Test in Europe, 2007,pp. 77–82.

[3] B. A. A. Zitouni and R. Tourki, “Design and

implementation of network interface compatible

OCP for packet based NOC,” in Proc. 5th Int Design

and Technology of Integrated Systems in Nanoscale

Era (DTIS) Conf, 2010, pp. 1–8.

[4] T. Tayachi and P.-Y. Martinez, “Integration of an

STBus Type 3 protocol custom component into a

HLS tool,” in Proc. 3rd Int. Conf. Design and

Technology of Integrated Systems in Nanoscale Era

DTIS 2008, 2008, pp. 1–4.

[5] “NoC Interface for fault-tolerant Message- Passing

communication on Multiprocessor SoC platform,” in

Proc. NORCHIP, 2009, pp. 1–6.

[6] “Synthesis of networks on chips for 3D systems on

chips,” in Proc. Asia and South Pacific Design

Automation Conf. ASP-DAC 2009, 2009, pp. 242–

247.

[7] “Efficient 2DMesh Network on Chip (NoC)

considering GALS approach,” in Proc. Fourth Int.

Conf. Computer Sciences and Convergence

Information Technology ICCIT ’09, 2009, pp. 841–

846.

