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Abstract: Cloud computing has recently gained tremendous momentum but still is in its infancy. It has the potential for 

significant cost reduction and the increased operating efficiencies in computing.In this paper, we investigate the benefits 

that organisations can reap by using “Cloud Computing” providers to augment the computing capacity of their local 

infrastructure. We evaluate the cost of seven scheduling strategies used by an organisation that operates a cluster managed 

by virtual machine technology and seeks to utilise resources from a remote Infrastructure as a Service (IaaS) provider to 

reduce the response time of its user requests. Requests for virtual machines are submitted to the organisation’s cluster, but 

additional virtual machines are instantiated in the remote provider and added to the local cluster when there are insufficient 

resources to serve the users’ requests. Naïve scheduling strategies can have a great impact on the amount paid by the 

organisation for using the remote resources, potentially increasing the overall cost with the use of IaaS. Therefore, in this 

work we investigate seven scheduling strategies that consider the use of resources from the “Cloud”, to under-stand how 

these strategies achieve a balance between performance and usage cost, and how much they improve the requests’ response 

times. 
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I. Introduction 

Managing and supplying computational resources to user 

applications is one of the main challenges for the high 

performance computing community. To manage resources 

existing solutions rely on a job abstraction for resource 

control, where users submit their applications as batch jobs 

to a resource management system responsible for job 

scheduling and resource allocation. This usage model has 

served the requirements of a large number of users and the 

execution of numerous scientific applications. However, 

this usage model requires the user to know very well the 

environment on which the application will execute. In 

addition, users can sometimes require administrative 

privileges over the resources to customise the execution 

environment by up-dating libraries and software required, 

which is not always possible using the job model. 
 

The maturity and increasing availability of virtual ma-

chine technologies has enabled another form of resource 

control based on the abstraction of containers. A virtual 

ma-chine can be leased and used as a container for 

deploying applications [28]. Under this scenario, users 

lease a number of virtual machines with the operating 

system of their choice; these virtual machines are further 

customised to pro-vide the software stack required to 

execute user applications. This form of resource control 

has allowed leasing abstractions that enable a number of 

usage models, including that of batch job scheduling [33]. 
 

The creation of customised virtual machine environments 

atop a physical infrastructure has enabled another model 

recently known as “Cloud Computing” [2, 38]. Based on 

theeconomies of scale and recent Web and network 

technologies, commercial resource providers, such as 

Amazon Inc., aim to offer resources to users in a pay-as-

you-go manner. These Cloud providers, also known as 

Infrastructure as a Service (IaaS) providers, allow users to 

set up and customise execution environments according to 

their application needs. Previous work has demonstrated 

how Cloud providers can be used to supply resources to 

scientific com-munities. Edelman et al. [9] demonstrated 

the cost of using Cloud providers to supply the needs for 

resources of data intensive applications. Planar et al. [27] 

have shown that Grid computing users can benefit from 

mixing Cloud and Grid infrastructure by performing costly 

data operations on the Grid resources while utilising the 

data availability provide by the Clouds, In this work, we 

investigate whether an organisation operating its local 

cluster can benefit from using Cloud providers to improve 

the performance of its users’ requests. We evaluate seven 
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scheduling strategies suitable for a local cluster that is 

managed by virtual machine based technology to improve 

its Service Level Agreements (SLAs) with users. These 

strategies aim to utilise remote resources from the Cloud to 

augment the capacity of the local cluster. How-ever, as the 

use of Cloud resources incurs a cost, the problem is to find 

the price at which this performance improvement is 

achieved. We aim to explore the trade-off between 

performance improvement and cost. 
 

We have implemented a system that relies on virtualisation 

technology for enabling users to request virtual ma-chines 

from both the local cluster and the Cloud to run 

applications. In this work, we evaluate via simulation 

seven strategies for improving scheduling performance 

through the use of a Cloud provider. In summary, the 

contributions of this work are to: 

• Describe a system that enables an organisation to 

augment its computing infrastructure by allocating 

resources from a Cloud provider. 
 

• Provide various scheduling strategies that aim to 

minimise the cost of utilising resources from the Cloud 

provider. 
 

• Evaluate the proposed strategies, considering different 

performance metrics; namely average weighted 

response time, job slowdown, number of deadline 

violations, number of jobs rejected, and the money 

spent for using the Cloud.Economies of scale and 

recent Web and network technologies, commercial 

resource providers, such as Amazon Inc., aim to offer 

resources to users in a pay-as-you-go manner. These 

Cloud providers, also known as Infrastructure as a 

Service (IaaS) providers, allow users to set up and 

customise execution environments according to their 

application needs. Previous work has demonstrated 

how Cloud providers can be used to supply resources 

to scientific com-munities. Edelman et al. [9] 

demonstrated the cost of using Cloud providers to 

supply the needs for resources of data intensive 

applications.  

Economies of scale and recent Web and network 

technologies, commercial resource providers, such as 

Amazon Inc., aim to offer resources to users in a pay-as-

you-go manner. These Cloud providers, also known as 

Infrastructure as a Service (IaaS) providers, allow users to 

set up and customise execution environments according to 

their application needs. Previous work has demonstrated 

how Cloud providers can be used to supply resources to 

scientific com-munities. Edelman et al. [9] demonstrated 

the cost of using Cloud providers to supply the needs for 

resources of data intensive applications. Planar et al. [27] 

have shown that Grid computing users can benefit from 

mixing Cloud and Grid infrastructure by performing costly 

data operations on the Grid resources while utilising the 

data availability provide by the Clouds. 
 

In this work, we investigate whether an organisation 

operating its local cluster can benefit from using Cloud 

providers to improve the performance of its users’ 

requests. We evaluate seven scheduling strategies suitable 

for a local cluster that is managed by virtual machine 

based technology to improve its Service Level Agreements 

(SLAs) with users. These strategies aim to utilise remote 

resources from the Cloud to augment the capacity of the 

local cluster. How-ever, as the use of Cloud resources 

incurs a cost, the problem is to find the price at which this 

performance improvement is achieved. We aim to explore 

the trade-off between performance improvement and cost. 
 

We have implemented a system that relies on 

virtualisation technology for enabling users to request 

virtual ma-chines from both the local cluster and the Cloud 

to run applications. In this work, we evaluate via 

simulation seven strategies for improving scheduling 

performance through the use of a Cloud provider. In 

summary, the contributions of this work are to: 

• Describe a system that enables an organisation to 

augment its computing infrastructure by allocating 

resources from a Cloud provider. 
 

• Provide various scheduling strategies that aim to 

minimise the cost of utilising resources from the Cloud 

provider. 
 

• Evaluate the proposed strategies, considering different 

performance metrics; namely average weighted 

response time, job slowdown, number of deadline 

violations, number of jobs rejected, and the money 

spent for using the Cloud. 

The rest of this paper is organised as follows. In Sect. 2 we 

provide the background on virtual machines, Cloud 

computing, and scheduling. Then, we present the seven 

scheduling strategies for redirecting requests from the 

cluster to the Cloud in Sect. 3. Section 4describes the 

system design. Next, Sect. 5shows the considered 

experimental scenario and reports the performance 

evaluation of the investigatedexisting systems based on 

virtual machines can man-age a cluster of computers by 

enabling users to create virtual workspaces [21] or virtual 

clusters [6, 14, 15] atop the actual physical infrastructure. 
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These systems can bind re-sources to virtual clusters or 

workspaces according to the demands of user applications. 

They also provide an inter-face through which the user can 

allocate virtual machines and configure them with the 

operating system and software of choice. These resource 

managers allow the user to create customised virtual 

clusters using shares of the physical machines available at 

the site.strategies. Related work is discussed in Sect. 

6whereas conclusions are presented in Sect. 7. 

II Background and context 

This work considers the case where an organisation 

manages a local cluster of computers through virtual 

machine technology to supply its users with resources 

required by their applications. The scenario, depicted in 

Fig. 1, can also represent a centre that provides computing 

resources to scientific applications or a commercial 

organisation that provisions re-sources to its business 

applications. The organisation wants to provision resources 

for its user applications in a way that guarantees acceptable 

response time. 
 

The resources of the local cluster are managed by a Virtual 

Infrastructure Engine (VIE) such as Open Nebula [14] and 

Eucalyptus [26]. The VIE can start, pause, resume, and 

stop Virtual Machines (VMs) on the physical resources 

offered by the cluster. The scheduling decisions at the 

cluster are performed by the Scheduler, which leases the 

site’s virtual machines to the users. The scheduler also 

manages the deployment of VMs on a Cloud Provider 

according to pro-visioning strategies, which are detailed in 

the next section. 

A. Virtualisation Technologies 

The increasing availability of VM technologies has 

enabled the creation of customised environments on top of 

physical infrastructures. The use of VMs in distributed 

systems brings several benefits such as: (i) server 

consolidation, al-lowing workloads of several under-

utilised servers to be placed in fewer machines; (ii) the 

ability to create VMs to run legacy code without 

interfering in other applications’ APIs; (iii) improved 

security through the creation of sand-boxes for running 

applications with questionable reliability; (iv) dynamic 

provision of VMs to services, allowing re-sources to be 

allocated to applications on the fly; and (v) performance 

isolation, thus allowing a provider to offer some levels of 

guarantees and better quality of service to customers’ 

applications. 
 

Existing systems based on virtual machines can man-age a 

cluster of computers by enabling users to create virtual 

workspaces [21] or virtual clusters [6, 14, 15] atop the 

actual physical infrastructure. These systems can bind re-

sources to virtual clusters or workspaces according to the 

demands of user applications. They also provide an inter-

face through which the user can allocate virtual machines 

and configure them with the operating system and software 

of choice. These resource managers allow the user to 

create customised virtual clusters using shares of the 

physical machines available at the site. They also provide 

an inter-face through which the user can allocate virtual 

machines and configure them with the operating system 

and software of choice. These resource managers allow the 

user to create customised virtual clusters using shares of 

the physical machines available at the site. 

 

Fig. 1  The Resource Provisioning Scenario 

computing sites. Therefore, we utilise virtualisation soft-

ware in our system design, described in Sect. 4, because 

existing cluster resource managers relying on virtual 

machines can provide the building blocks, such as 

availability information, required for the creation of virtual 

execution environments. The creation of execution 

environments comprising multiple computing sites is our 

long-term goal. In addition, relying on virtual machines 

eases deploying execution environments on multiple 

computing sites as the user application can have better 

control over software installed on the resources allocated 

from the sites without compromising the operation of the 

hosts’ operating systems. 

B. Infrastructure as a service 

Virtualisation technologies have also facilitated the 

realisation of new models such as Cloud Computing or 

IaaS. The main idea is to supply users with on-demand 

access to computing or storage resources and charge fees 

for their usage. In these models, users pay only for the 

resources they utilise. A key provider of this type of on-

demand infrastructure is Amazon Inc. with its Elastic 

Compute Cloud (EC2) [1]. EC2 allows users to deploy 
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VMs on Amazon’s infrastructure, which is composed of 

several data centres located around the world. To use 

Amazon’s infrastructure, users deploy in-stances of pre-

submitted VM images or upload their own VM images to 

EC2. The EC2 service utilises the Amazon Simple Storage 

Service (S3), which aims at providing users with a globally 

accessible storage system. S3 stores the users’ VM images 

and, as EC2, applies fees based on the size of the data and 

the storage time. 

C. Scheduling And Redirection Strategies 

The strategies investigated in this work define how the 

scheduler performs the scheduling of leases and when it 

borrows resources from the Cloud. The scheduler is 

divided into two sub-scheduler modules, one managing the 

scheduling of requests at the local cluster, hereafter also 

termed the Site Scheduler, and another managing the 

schedulingon the Cloud resources, termed as the Cloud 

scheduler. We term a strategy or algorithm used to 

schedule the leases as a scheduling strategy, and the 

algorithm that defines when the scheduler borrows 

resources from the Cloud and which requests are 

redirected to the Cloud resources as a redirection strategy. 

A combination of scheduling and redirectionstrategies is a 

strategy set. As discussed later in Sect. 3, a redirection 

strategy can be invoked at different times (e.g. a job arrival 

or completion) in different strategy sets. 

D. Types Of User Requests 

In addition to the type of virtual machine required and con-

figuration details, a request r is a tuple containing at least 

n, rt, d , where n specifies the number of virtual 

machinesrequired; rt is the ready time, before which the 

request is not ready for execution; and dis the deadline for 

request completion. These parameters are sufficient to 

specify a wide range of virtual machine requests. As 

demonstrated latter in Sect. 5, by making rt larger than the 

submission time, the user can specify deadline constrained 

requests that require advance reservation of virtual 

machines. 
 

The users of the infrastructure run different applications 

with different computing requirements. Some applications 

need resources at particular times to meet application 

dead-lines, whereas other applications are not strict about 

the time when they are given resources to execute as long 

as they are granted the resources required. The first 

category of applications is termed as deadline-constrained 

whereas the second category is termed as best-effort. 
 

For the purposes of this work, users are to be serviced by 

virtual machines hosted by an individual computing site; 

thus the same user request cannot receive resources from 

both the Cloud provider and the organisation’s cluster. 

Applications that rely heavily on message passing 

interfaces are generally sensitive to network delays and, 

despite advances in virtualisation technology [36], may not 

benefit heavily from using resources from multiple 

computing sites. In practice, the execution of these 

applications is generally confined to an individual 

computer cluster. 

We will relax this assumption in future work as 

applications may present different communication 

demands. Some applications are composed of tasks that 

consist of multiple executions of the same program with 

different input para-meters. These applications are often 

called bag-of-tasks and the tasks generally do not require 

communication between them; makes. 

III Evaluated Strategy Sets 

As described in Sect. 2, a strategy set consists of strategies 

for scheduling requests at the site and the Cloud, and a 

redirection strategy that specifies which requests are 

redirected to the Cloud 
 

As scheduling strategies we use conservative [25], 

aggressive [22], and selective backfilling [34]. With 

conservative backfilling, each request is scheduled (i.e. it 

is granted a reservation) when it arrives in the system, and 

requests are allowed to jump ahead in the queue if they do 

not de-lay the execution of other requests. In aggressive 

backfilling, only the request at the head of the waiting 

queue—called thepivot—is granted a reservation. Other 

requests are allowedto move ahead in the queue if they do 

not delay the pivot. Selective backfilling grants 

reservations to requests that have waited long enough in 

the queue. Under selective backfilling a request is granted 

a reservation if its expected slowdown exceeds a threshold. 

The expected slowdown of a request r is also called 

expansion Factor (Factor) and is given by (1) 

XFactor= (wait time + run time)/run time. (1)
 

In fact, we use the Selective-Differential-Adaptive scheme 

proposed by Srinivasan et al. [34], which lets the 

XFactorthreshold be the average slowdown of previously 

completed requests. 
 

The following strategy sets are used for scheduling re-

quests that arrive at the organisation’s cluster: 
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Naïve: both local Site and Cloud schedulers use 

conservative backfilling to schedule the requests. The 

redirection algorithm is executed at the arrival of each job 

at the site. If the site scheduler cannot start a request 

immediately, the redirection algorithm checks whether the 

request can be started immediately using Cloud resources. 

If the request can start on the Cloud resources, then it is 

redirected to the Cloud, otherwise it is placed in the site’s 

waiting queue. 

Shortest queue: jobs at the site’s cluster are scheduled in 
 

a First-Come-First-Served (FCFS) manner with aggressive 

backfilling [22]. The redirection algorithm executes as 

each job arrives or completes, and computes the ratio of 

virtual machines required by requests currently waiting in 

the queue to the number of processors available, similar to 

the work of England and Weismann [12]. If the Cloud’s 

ratio is smaller otherwise, a tentative schedule is built for 

Cloud re-sources. If the request does not break deadlines 

of requests scheduled to use the Cloud, the request is 

served with re-sources from the Cloud provider. If the 

request deadline can-not be met, the scheduler schedules 

the request using the local site’s resources if they provide a 

better start time than the Selective: the local site uses the 

selective backfillingscheme described earlier. As each job 

arrives or completes, the scheduler checks which requests 

can be started, then starts them. Using the same approach 

based on queue relations used in the Shortest Queue 

strategy, the scheduler then computes the ratios for the 

cluster and the Cloud. If the ratios are different, the 

algorithm iterates the list of waiting re-quests and checks 

their Factors. For each waiting request, if the expansion 

factor exceeds the threshold, the algorithm checks the 

potential start time for the request at both the Cloud and 

the site. The algorithm finally makes a booking at the place 

that provides the earliest start time.sources from the Cloud 

provider. If the request deadline can-not be met, the 

scheduler schedules the request using the local site’s 

resources if they provide a better start time than the than 

the cluster’s, the redirection algorithm iterates the list of 

waiting requests and redirects requests until both ratios are 

similar. 
 

Weighted queue: this strategy is an extension of the Short 

Queue strategy. As each job arrives or completes, the 

scheduler computes the number of virtual machines 

required by waiting requests on the cluster and how many 

virtual ma-chines are in execution on the Cloud. The site 

scheduler then computes the number of VMs that can be 

started on the Cloud, num_vms, as the minimum between 

the number of VMs demanded by the site’s requests and 

the Cloud’s VM limit, and redirects requests to the Cloud 

until numvms is reached. 
 

Selective: the local site uses the selective 

backfillingscheme described earlier. As each job arrives or 

completes, the scheduler checks which requests can be 

started, then starts them. Using the same approach based 

on queue ratios used in the Shortest Queue strategy, the 

scheduler then computes the ratios for the cluster and the 

Cloud. If the ratios are different, the algorithm iterates the 

list of waiting re-quests and checks their XFactors. For 

each waiting request, if the expansion factor exceeds the 

threshold, the algorithm checks the potential start time for 

the request at both the Cloud and the site. The algorithm 

finally makes a reservation at the place that provides the 

earliest start time. 
 

We also investigate strategies to schedule deadline con-

strained requests using resources from the site and the 

Cloud provider. The additional deadline-aware strategy 

sets are: 
 

Conservative: both local site and Cloud schedule 

requestsusing conservative backfilling. As each request 

arrives, the scheduler checks if the site can meet the 

request’s dead-line. If the deadline cannot be met, the 

scheduler checks the availability on the Cloud. If the 

Cloud can meet the re-quest’s deadline, then the request is 

scheduled on the Cloud resources. If the request deadline 

cannot be met, the scheduler schedules the request on the 

local site if it provides a better start time than the Cloud. 

Otherwise, the request is redirected to the Cloud. 
 

Aggressive: both local site and Cloud use 

aggressivebackfilling to schedule requests. Similarly to the 

work of Singh et al. [32], as each request arrives the 

scheduler builds a tentative schedule for currently waiting 

requests. Using aggressive backfilling for building the 

tentative schedule, the scheduler sorts the requests 

applying an Earliest Deadline First scheme and checks 

whether the acceptance of the arriving request would break 

any request deadline. If there are no potential deadline 

violations, the request is scheduled locally; otherwise, a 

tentative schedule is built for Cloud re-sources. If the 

request does not break deadlines of requests scheduled to 

use the Cloud, the request is served with re-sources from 

the Cloud provider. If the request deadline can-not be met, 

the scheduler schedules the request using the local site’s 
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resources if they provide a better start time than the If the 

request does not break deadlines of requests scheduled to 

use the Cloud, the request is served with re-sources from 

the Cloud provider. If the request deadline can-not be met, 

the scheduler schedules the request using the local site’s 

resources if they provide a better start time than theCloud. 

Otherwise the request is served by resources from the 

Cloud. 
 

Conservative with reservation support: both local 

siteand Cloud schedule requests using conservative 

backfilling with support for advance reservation of 

resources. As each request arrives, the scheduler checks 

whether it is a best-effort or reservation request. In the first 

case, the request is placed in the local site. Otherwise, for 

an advance reservation request the scheduler first checks if 

the site can provide the resources during the required time-

frame. If there are not resources available during the 

requested time-frame, the scheduler checks the resource 

availability on the Cloud. The request is then scheduled on 

the Cloud if it can provide the resources required; 

otherwise the reservation request is rejected. 
 

Although as of writing of this paper some Cloud providers 

do not support advance reservation that does not impact 

our system because reservations are managed by an entity 

(i.e. Gateway) that uses the Cloud API to start and stop 

virtual machines when reservations commence or finish. 

The assumption of this work is that the Cloud will provide 

the re-sources required when reservations are enforced. 

IV.System Design 

In this section, we describe briefly the design of the Inter-

Grid Gateway (IGG), which is analogous to the scheduler 

and uses a VIE to enforce virtual machine leases granted to 

users. The names of the components derive from our 

previous work on the interconnection of computational 

Grids [8]. A complete description of the implementation 

and an evaluation of the system is available elsewhere 

[10]. 
 

IGGs can have peering relationships that define under 

which circumstances they borrow resources from one an-

other (i.e. redirection strategies). These peering relation-

ships specify when an IGG seeks to use resources from an-

other IGG and how the IGG evaluates a request for 

resources from another IGG. The IGG has been 

implemented in Java, and a layered view of its components 

is presented in Fig. 2. 
 

The central component of the IGG is the Scheduler; in 

charge of serving users’ requests, handling reservations, 

and managing start and stop of virtual machines when jobs 

are scheduled. The scheduler maintains the resource 

availability information and interacts with the Virtual 

Machine Manager (VM Manager) for creating, starting or 

stopping virtual ma-chines to fulfil the requirements of the 

scheduled requests. 
 

The IGG does not share physical resources directly, but 

relies on virtualisation technology to abstract them. The 

VM Manager controls the deployment of virtual machines 

for the IGG. The types of virtual machines available for 

the IGG are described as Virtual Machine Templates, 

which are analogous to computers’ configurations. A VM 

template 

 

Fig. 2  Main components of the IGG 

describes a type of VM and contains information such as 

the number of processors or cores assigned to the VM, the 

amount of memory, the kernel used to boot the operating 

system, the disk image, and the price of using a VM of this 

type over one hour. All available templates are stored in 

the IGG’s repository. At present, users willing to request 

VMs, need to specify the templates they want to use from 

the repository. In addition, IGGs need to agree on the 

templates in order to allow one IGG to borrow VMs from 

another. In this work, we consider that the Cloud provider 

has a matching template for each template available at the 

organisation’s cluster. 
 

The VM Manager deploys VMs on physical resources 

when requested by the IGG. The scheduling strategies that 

define when and which VMs are started or shut down are 

implemented as part of the IGG’s scheduler. The VM 

Manager relies on a VIE for deploying and managing 

VMs; the cur-rent implementation uses Open Nebula as a 

VIE for virtualising a physical cluster infrastructure. In 
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addition, the VM Manager is able to control VMs hosted 

by a Cloud provider such as Amazon EC2 [1]. 
 

The Communication Module is responsible for message 

passing. This module receives messages from other entities 

and delivers them to the components registered as 

listeners. Message-passing makes gateways loosely 

coupled and al-lows for more failure-tolerant 

communication protocols. 

V. Performance Evaluation 

This section describes the scenario considered for 

performance evaluation, the performance metrics, and 

experimental results. 

 

A Experimental Scenario 

The evaluation of the strategies is performed by using a 

discrete-event simulator [5]. We use simulation because 

itenables us to perform repeatable experiments, and the 

cost incurred by performing experiments on real 

infrastructure would be prohibitively expensive. To store 

the information about resources available for running 

virtual machines, the scheduler uses a data structure based 

on a red-black tree [7] whose nodes contain the list of 

resources available at the start or completion of leases. The 

tree is augmented by a double-linked list connecting the 

sibling nodes; this list eases the interaction for finding 

alternative time slots when handling advance reservations 

or looking for potential start times for requests. This data 

structure is based on the idea of availability profile used in 

some implementations of conservative backfilling [25]. 
 

For the experiments that do not involve advance 

reservations, we model the San Diego Super Computer 

(SDSC) Blue Horizon machine because job traces 

collected from this supercomputer are publicly 

available1and have been studied previously [23]. The Blue 

Horizon machine comprises 144 nodes. The experiments 

with advance reservations model the infrastructure of the 

Lyon site of Grid’5000.2This site has 135 nodes and the 

requests submitted to it resemble requests for virtual 

machines; users reserve resources and deploy sys-tem 

images containing the customised operating system and 

required applications. To model the workload we use 

traces collected from this site containing one year of 

request sub-missions. 
 

The limit of virtual machines that the site can host is the 

same as the number of nodes. In addition, in this work the 

maximum number of virtual machines that can be in 

execution by the Cloud provider at a particular time is the 

same as the maximum in the local cluster. We plan to relax 

this assumption in future work. 
 

To compute the cost of using resources from the Cloud 

provider, we use the amounts charged by Amazon to run 

basic virtual machines at EC2 (i.e. as of writing of this 

paper the rate was US$0.10 per virtual machine/hour). The 

experiments consider only the amount charged to run 

VMs, but in practise Amazon charges for the usage of 

other resources such as network and storage. Other usage 

fees are not considered in this work because they depend 

on the applications’ communication and data requirements. 
 

The operating system running on a virtual machine takes 

from a few seconds to some minutes to boot, but Amazon 

commences charging users when the VM process starts. 

The experiments therefore consider that the booting time is 

al-ready included into the request’s duration. In addition, 

the experiments consider full-hours of utilisation; if a 

request uses a VM for 30 minutes for example, the cost of 

one hour is considered. 
 

B.Performance Metrics 

Some metrics related to requests’ response times include 

the bounded job slowdown (bound= 10 seconds), hereafter 

referred only as job slowdown [13] and the Average 

Weighted Response Time (AWRT) [16]. The AWRT 

measures how long on average users wait to have their 

requests completed. A short AWRT indicates that on 

average users do not wait long for their requests to 

complete. 

 
 
 

The AWRT is given by (2), where mj is the number of 
virtual machines required by request j ,pj is the execution 
time of the request, ctj is the time of completion of the re-
quest and stj is its submission time. The resource 
consumption (pj·mj ) of each request j is used as the 
weight. 

In order to compute the benefits of using one strategy over 

another, we also compute the cost ratio between AWRT 

and the amount spent in running virtual machines on the 

Cloud. In addition, we measure the number of deadline 

oblations and request rejections when we evaluate 

scenarios where some requests are deadline constrained. 

More information about the ratios is provided along with 

respective trials. 
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C. Experimental Results 

The first experiment evaluates the performance 

development of different strategy sets by running virtual 

machines on the Cloud provider and the cost of such 

improvement in each case. This experiment uses a metric 

termed as performance cost. The performance cost of a 

strategystis givenby (3). 

 
 
 

where Amount spent is the amount spent running virtual 
machines on the Cloud provider, AWRTbase is the AWRT 
achieved by a base strategy that schedules requests using 
only the site’s resources and AWRTst is the AWRT reached 
by the strategy st when Cloud resources are also utilised. 
This metric aims to quantify the improvement achieved in 
AWRT and its cost; the smaller the performance 
improvement cost, the better the strategy performs. In the 
experiments described in this section, the base strategy is 
FCFS with aggressive backfilling. 
 

For this experiment, the site’s workloads have been 

generated using Lublin99, here referred to as Lublin and 

Feit-elson [23]. Lublin99 has been configured to generate 

two-month-long workloads of type-less requests (i.e. no 

distinction is made between batch and interactive 

requests); the offer resources to users in a pay-as-you-go 

manner. These Cloud providers, also known as 

Infrastructure as a Service (IaaS) providers, allow users to 

set up and customise execution environments according to 

their application needs. Previous work has demonstrated 

how Cloud providers can be used to supply resources to 

scientific com-munities. Edelman et al. [9] demonstrated 

the cost of using Cloud providers to supply the needs for 

resources of data intensive applications. Planar et al. [27] 

have shown that Grid computing users can benefit from 

mixing Cloud and Grid infrastructure by performing costly 

data operations on the Grid resources while utilising the 

data availability provided by the Clouds. Previous work 

has demonstrated how Cloud providers can be used to 

supply resources to scientific com-munities. Edelman et al. 

[9] demonstrated the cost of using Cloud providers to 

supply the needs for resources of data intensive 

applications. Planar et al. [27] have shown that Grid 

computing users can benefit from mixing Cloud and Grid 

infrastructure by performing costly data. 

It offers resources to users in a pay-as-you-go manner. 

These Cloud providers, also known as Infrastructure as a 

Service (IaaS) providers, allow users to set up and 

customise execution environments according to their 

application needs. Previous work has demonstrated how 

Cloud providers can be used to supply resources to 

scientific com-munities. Edelman et al. [9] demonstrated 

the cost of using Cloud providers to supply the needs for 

resources of data intensive applications. Planar et al. [27] 

have shown that Grid computing users can benefit from 

mixing Cloud and Grid infrastructure by performing costly 

data operations on the Grid resources while utilising the 

data availability provided by the Clouds. Previous work 

has demonstrated how Cloud providers can be used to 

supply resources to scientific com-munities. Edelman et al. 

[9] demonstrated the cost of using Cloud providers to 

supply the needs for resources of data intensive 

applications. maximum number of CPUs used by the 

generated requests is set to the number of nodes in the 

cluster. This trial evaluates the performance cost under 

different types of workloads. In order to generate different 

workloads, we modify three parameters of Lublin99’s 

model, one at a time. First, we change the mean number of 

virtual machines obligatory by a request (specified in log2) 

to log2m−umed where m is the maximum number of virtual 

machines al-lowed in system. We vary used from 1.5 to 

3.5. The larger the value of umed, the smaller the requests 

become in terms of numbers of VMs required and 

consequently result in lighter loads. The second parameter 

changed in the trials affects the inter-arrival time of 

requests at rush hours. The inter-arrival rate of jobs is 

modified by setting the β of the gamma distribution 

(hereafter termed barr), which we vary from 0.45 to 0.55. 

As the values for barr increase, the inter-arrival time of 

requests also increases. The last para-meter impacts on the 

request duration by changing the pro-portion of the first 

gamma in the hyper-gamma distribution used to compute 

the requests runtimes. The proportion p of the first gamma 

in Lublin and Feitelson’s model [23] is given by 

p=pa∗nodes+pb. We vary the parameter pb from 0.5 to 

1.0. The larger the value of pb, the smaller the duration of 

the requests. 

 

The results of this experiment are shown in Fig. 3. Each 

data point is the average of 5 simulation rounds. Graphs 

(a), 
 

(b) and (c) show the site’s utilisation under aggressive 

back-filling scheduling when the Cloud resources are not 

used. These graphs illustrate the effect of the parameter 

changes on the load. Graphs (d), (e) and (f) show the 
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performance cost when we vary: the number of VMs 

required by a re-quest, the inter-arrival interval and the 

request’s duration, respectively. The higher values 

obtained by the naïve strategy show that more money is 

spent to achieve a development in AWRT, especially 

under heavy loads, as shown in graph (d). From graphs (a) 

and (d), we also observe that the performance cost of using 

the Cloud is linear with the decrease in number of VMs of 

requests except for the naïve strategy, which is very 

expensive for small requests. Under lighter loads, all 

strategies tend to yield the same ratio of cost and 

performance. With small inter-arrival periods, all strategies 

have similar performance, except the naïve plan. The naïve 

strategy again provides a high performance cost, as shown 

in graph (e). With the variation of request arrival time, the 

experiments show a limit of the presentation cost close to 

US $5,500. The cost increases until this limit and then 

decreases, due to the increase of the request inter-arrival 

time. More time between requests allows using less 

resources, which makes it more costly to rely on the Cloud 

to improve the request response time. For smaller inter-

arrival time values, there is an important difference in cost 

of performance for the naïve strategy in comparison to 

other strategies. In the last part of the experiment, graphs. 

(c) and (f), all strategies return similar performance cost 

for the same request duration variation. The performance 

cost is inversely proportional to the cluster usage. 
 

The second experiment evaluates the site using 

resources from the Cloud to meet service level agreements 

with con-sumers. In this experiment the requests have 

deadlines and we measure the cost of reducing deadline 

violations, or re-quests completing after their deadlines. 

The cost of reducing deadlines using a strategy st is given 

by (4). 

 

non-violation costst= 

amount spentst 

, (4)violbase−violst 

whereAmount spentst is the amount spent with Cloud re-
sources, violbase is the number of violations using a base 
strategy and violst is the number of violations under the 
evaluated strategy. The base policy is aggressive 
backfilling sorting the jobs for scheduling and backfilling 
in an Earliest Deadline First manner. 
 

This experiment uses real job traces collected from the 

SDSC Blue Horizon machine to model the workload of the 

site’s cluster. As the job trace spans a period of two years, 

we divide it into intervals of two months each. For each 

test, we perform 5 simulation rounds using a different 

workload for each round. As the deadline information is 

not available in the trace, we use a Bernoulli distribution to 

select from the trace the requests that should have 

deadlines. In this way, a request read from the job trace file 

has a likelihood of being deadline constrained. The 

experiments consider different numbers of deadline 

constrained requests. 
 

To generate the request deadlines we use a technique de-
scribed by Islam et al. [20], which provides a feasible 
schedule for the jobs. To obtain the deadlines, we perform 
the ex-pediments by scheduling requests on the site’s 
cluster with-out the Cloud using aggressive backfilling. 
After that, the deadline dj of a job j is calculated using (5): 

 

d 

j  = 

stj+ (taj∗sf ), if [stj+(taj∗sf)]<ctj , (5)

 ctj , otherwise,  
 

wherestj is the request j ’s submission time, ctj is its 
completion time, taj if the request’s turn around time (i.e. 
the difference between the request’s completion and 
submission times) and sf is a stringency factor that 
indicates how ur-gent the deadlines are. If sf= 1, then the 
request’s deadline is the completion under the aggressive 
backfilling scenario. We evaluate the strategies with 
different stringency factors (i.e. 0.9, 1.3 and 1.7 termed 
tight, normal and relaxed dead-line scenarios respectively). 
 

The results of this experiment are depicted in Fig. 4. The 

top graphs show the amount spent using resources from the 

Cloud provider to reduce the number of deadline 

violations. The Conservative and the Aggressive deadline 

strategies spend smaller amounts than the remaining 

strategies The results of this experiment are depicted in 

Fig. 4. The top graphs show the amount spent using 

resources from the Cloud provider to reduce the number of 

deadline viola-tions. 
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Fig. 3 The top three graphs show the site’s utilisation using 
the base aggressive backfilling strategy without Cloud 
resources; the bottom three graphs show the performance 
cost under different workloads. Higher values of umed 
result inrequests requiring a larger numberof VMs. The 
larger the value of barr, the greater the inter-arrival time of 
requests at rush hours. The time duration of the requests 
decrease as the value of pb increases. Each data point is 
the average of 5 simulation rounds 

 

Fig. 4 Thetop graphsshow the amount spent using 
resources fromthe Cloud provider; the bottom graphs show 
the cost of decreasing deadline violations under different 

numbers of deadline constrained 

cause they are designed to consider deadlines. Other plans, 

except the naïve, sort the requests according to dead-lines; 

however, take into account other performance aspects such 

as minimising response time when redirecting requests to 

be scheduled on the Cloud. With a small proportion of 

deadline constrained requests with tight deadlines, the 

aggressive strategy had a smaller cost that the conservative 

strategy. With normal deadlines and a large number of 

dead-line constrained requests, the aggressive strategy 

spends more than the conservative strategy. 

 

Fig. 5  (a)Amount spent using resources from the Cloud 
provider; 

 

(b) the decrease of requests rejected. Each data point is the 
average of 5 simulation rounds 

We decided to evaluate the aggressive deadline strategy 

further in a scenario considering only the site’s resources 

and a case considering the site and the Cloud. If the 

deadline of a request cannot be met, the request is rejected. 

This ex-pediment evaluates how much the organisation 

would need to spend to decrease the number of jobs 

rejected. The results are summarised in Fig. 5. 
 

Figure 5(a) shows the amount spent on the Cloud 
and(b)depicts the percentage of jobs rejected when the 
Cloud is used and not used. An amount of US $3,000 is 
spent on the Cloud to keep the number of jobs rejected 
close to zero under a case where 70% of the requests have 
deadlines. With normal deadlines, the strategy did not 
spend more than US $1,500 in any quantity of deadline 
constrained requests. 
 

Again using traces from the SDSC Blue Horizon, this ex-

pediment evaluates the amount of money spent using the 

Cloud infrastructure under different scheduling strategies, 

and compares the improvement of the strategies to a 

situation where requests were scheduled using only the 

site’s resources with aggressive backfilling. Table 

1summarises the results. All the strategies  

AWRT improvement. However, the proposed strategy set 

based on selective backfilling yields a better ratio of slow-
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down improvement to amount of money spent for using 

Cloud resources. 
 

The experimental results show that the cost of 

increasing the performance of application scheduling is 

higher under a scenario where the site’s cluster is 

underutilised. However, the cost-benefit of using a naïve 

scheduling strategy can be smaller than using other 

approaches as a large cost is incurred under scenarios of 

high system utilisation. In addition, request backfilling and 

redirection based on the growth factors (i.e. selective 

backfilling) have shown a good ratio of slowdown 

improvement to amount of money spent for using Cloud 

resources. 

D. Advance Reservations 

The experiments discussed in this section measure the cost 

of handling additional load by using the Cloud to increase 

the support for reservation of resources. Thereby, we 

amount the cost of redirecting reservation requests to a 

Cloud provider and the cost of wasting Cloud resources if 

the redirected requests fail. As described beforehand, the 

experiments use a trace collected from a Grid’5000 site 

containing one year of request submissions. We split the 

trace into two-month-long periods, and we use a different 

part for each simulation round. All values reported by the 

experiments are averages of 5 simulation rounds. 
 

The original request trace contains reservation and best-

effort requests. Best-effort requests do not require 

reservation of resources and their start times are 

determined by the scheduler; the scheduler places then in 

the queue and starts their execution at the earliest time 

when enough resources are available; a best-effort request 

can be pre-empted to make room for a reservation. Whilst 

we maintain the ratio of reservation and best-effort 

requests in the experiments, we do not consider pre-

emption of requests; once the schedule of a best-effort 

request is determined, it is not pre-empted to give room for 

a reservation. 
 

To measure the cost of increasing the support for advance 

reservations, we select randomly from the trace the 

requests that correspond to the additional load. That is, all 

the original requests are submitted, along with requests 

randomly selected from the same trace (i.e. additional 

load). The fraction of requests selected is the additional 

load and varies from 0 to 100%. Furthermore, the trace 

contains requests whose executions have failed due to 

factors such as incorrect configuration of system images 

and problems with the organised application. When these 

requests are redirected to a Cloud provider and the 

required virtual machines are started, but not fully utilised 

because the application has failed, the allocation 

corresponds to a wastage of resources from the 

organisation’s perspective. Although we do not have 

details. Furthermore, the trace contains requests whose 

executions have failed due to factors such as incorrect 

configuration of system images and problems with the de-

played application. When these requests are redirected to a 

Cloud provider and the required virtual machines are 

started, but not fully utilised because the application has 

failed, the allocation corresponds to a wastage of resources 

from the organisation’s perspective. Although we do not 

have details 

 
 

 

Table 1 Performance of the strategies using workload 
traces (averages of 5 simulation rounds) 
 

 

Metric description Naïve

   

Amount spent with VM instances ($) 5,478.54

Number of VM instances/Hours 54,785.40

Average weighted response time 
(improvement) 15,036.77

Overall Job slowdown (improvement) 38.29

   

Table 2 Cost of increasing the support for reservations 
(averages of 5 simulation rounds) 
 

 

Additional load 0% 10% 20% 30% 40%

       

Amount spent on the Cloud 
($) 77 754 1778 3034 3926

Number of requests 
redirected 114 1032 1748 2939 4254

Load redirected (%) 0.52 5.20 11.58 19.47 23.31 29.78

Amount wasted with failures 
($) 49 567 1355 2379 3044
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about the reasons why these applications have failed in the 

original execution, we attempt to measure the money spent 

(or wasted) to allocate resources from the Cloud to serve 

these applications. 
 

Table 2summarises the results. The first line shows the 

amount of money spent using resources from the Cloud 

un-der various additional load configurations. The second 

and the third lines show respectively the number of 

requests redirected to the Cloud and their corresponding 

load percentages compared to the overall load generated. 

The last line shows the amount of money (in US $) spent 

with requests whose executions have failed. One can 

observe that all the additional load injected is redirected to 

the Cloud provider and that the amount spent on the Cloud 

grows proportionally to the load redirected. Furthermore, 

around 60% to 70% of the money spent by using resources 

from the Cloud were spent on requests whose executions 

have failed. As discussed be-forehand, it is difficult to 

argue that all these failures re-ported in the original log 

have roots on deployment issues; and that is probably not 

the case. In addition, one can advocate that a commercial 

provider would offer minimum quality of service and 

resource availability guarantees that could minimise the 

number of failures. However, it is important to notice that 

the results demonstrate that if a commercial Cloud 

provider is used to extend the capacity of a local 

infrastructure, deployment of applications and load 

redirection have to be planned carefully to avoid wastage 

of resources and consequently waste of money. 

VI.Related Work 

Lease abstractions relying on virtual machine technology 

have been proposed [19, 21, 33]. Sotomayor et al. [33] ex-

a lease abstraction to handle the scheduling of a 

combination of best-effort jobs and advance reservations. 

Kea-hey et al. [21] demonstrated how to create customised 

execution environments for a Grid community via Globus 

Virtual Workspaces. Shirk provides a system of brokers 

that enable the leasing of various types of resources 

including virtual machines [19]. In addition, the number of 

migrations required when the broker and a site scheduler 

use contradictory policies has been investigated [17]. We 

evaluate the cost of extending the capacity of an 

organisation’s cluster for refining the response time of user 

requests. 
 

The applicability of Amazon services for Grid 

computing has been demonstrated in existing work. Planar 

et al. [27] evaluated the use of Amazon S3 for Science 

Grids with data-intensive applications and concluded that 

Amazon S3 can be used for some of the operations 

required by data-intensive Grid applications. Although 

Grid applications can benefit from using Amazon services, 

such as improving data avail-ability, Palankar et al. 

highlighted that a balance between the benefits of Amazon 

services and the cost of using Amazon’s infrastructure 

should be taken into account. This balance involves 

performing expensive operations that generate large 

amounts of temporary data at the Grid infrastructure. Deel-

man et al. [9] evaluated the cost of using Amazon EC2 and 

S3 services to serve the resource requirements of a 

scientific application. 
 

Existing work has shown how to enable virtual clusters 

that span multiple physical computer clusters [11, 30, 31]. 

Emeneker et al. [11] evaluated the overhead of creating 

virtual clusters using Xen [4] and the Moab scheduler. 

VioCluster [30] is a system in which a broker responsible 

for managing a virtual domain (i.e. a virtual cluster) can 

borrow resources from another broker. Brokers have 

borrowing and lending policies that define when machines 

are requestedfrom other brokers and when they are 

returned, respectively. The resources borrowed by one 

broker from another are used to run User Mode Linux 

virtual machines. 
 

Systems for virtualising a physical infrastructure are also 

available. Montero et al. [24] investigated the deployment 

of custom execution environments using Open Nebula. 

They investigated the overhead of two distinct models for 

starting virtual machines and adding them to an execution 

environment. Montero et al. [29] also used Grid Way to 

deploy virtual machines on a Globus Grid; jobs are 

encapsulated as virtual machines. They evaluated several 

strategies such as using one virtual machine execution per 

job, pausing the simulated machine between job 

executions, and reusing the virtual machine for multiple 

job executions. Montero et al. showed that the overhead of 

starting a virtual machine is small for the application 

evaluated. We use Open Nebula in the real system 

implementation of our architecture. 
 

Singh et al. [32] proposed an adaptive pricing for advance 

reservations where the price of a reservation depends on 

how many jobs it delays. Aggressive backfilling is used to 

build a tentative schedule and test how many jobs are 

delayed. We use a similar approach for request admission 
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control in one of our deadline-aware strategies and for 

deciding on the redirection of requests to the Cloud 

provider. 
 

Market based resource allocation mechanisms for large-

scale distributed systems have been investigated [39]. In 

this work, we do not explore a market-based mechanism as 

we rely on utilising resources from a Cloud provider that 

has cost structures in place. We focus on evaluating the 

trade-offs between improvement of scheduling user 

applications and cost of resource utilisation. Specifically, 

we aim to evaluate the cost of performance improvements. 
 

Several load sharing mechanisms have been investigated in 

the distributed systems realm. Iosup et al. [18] proposed a 

matchmaking mechanism for enabling resource sharing 

across computational Grids. Wang and Morris [37] invest-

gated different strategies for load sharing across computers 

in a local area network. Surana et al. [35] addressed the 

load balancing in DHT-based P2P networks. Balazinska et 

al. [3] proposed a mechanism for migrating stream 

processing workers in a federated system. We evaluate the 

benefits and the cost of adding resources from a Cloud 

provider to an organisation’s infrastructure. 

VII. Conclusion 

This paper evaluated the cost of improving the scheduling 

performance of virtual machine requests by allocating ad-

additional resources from a Cloud computing 

infrastructure. We considered the case of an organisation 

that operates its computing infrastructure, but wants to 

allocate additional re-sources from a Cloud infrastructure. 

The experiments evaluated the cost of improving the 

performance under different strategies for scheduling 

requests on the organisation’s gathering and the Cloud 

provider. Naïve scheduling strategies can result in a higher 

cost under heavy load conditions. New results showed that 

the cost of increasing the performance of application 

scheduling is higher under a scenario where the site’s 

cluster is under-utilised. In addition, request backfilling 

and redirection based on the expansion factors (i.e. 

selective backfilling) showed a good ratio of slowdown 

improvement to the money spent for using Cloud 

resources. 
 

In future work, we would like to study the performance of 

different types of applications, such as bag-of-tasks or 

SPMD running on the local cluster, on the Cloud provider, 

and both at the same time. In addition, we are currently 

working on an adaptive strategy that aims to optimise 

scheduling performance considering the user’s budget. For 

a given budget amount, the scheduler would find the best 

strategy to fulfil the user’s request. 
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