
Indian J.Sci.Res. 14 (2): 208-214, 2017 ISSN: 2250-0138 (Online)

1Corresponding author

A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING

ALGORITHMS FOR SOFTWARE EFFORT ESTIMATION

POONAM RIJWANI
a1
 AND SONAL JAIN

b

ABSTRACT

 Accurate Software Effort Estimation is vital to the areas of Software Project Management. It is a process to predict

the Effort in terms of cost and time, required to develop a software product. Traditionally, researchers have used the off the

shelf empirical models like COCOMO or developed various methods using statistical approaches like regression and analogy

based methods but these methods exhibit a number of shortfalls. To predict the effort at early stages is really difficult as very

less information is available. To improve the effort estimation accuracy, an alternative is to use machine learning (ML)

techniques and many researchers have proposed plethora of such machine learning based models. This paper aims to

systematically analyze various machine learning models considering the traits like type of machine learning method used,

estimation accuracy gained with that method, dataset used and its comparison with empirical model. Although researchers

have started exploring Machine learning from past two decades, this paper analyses comparison on studies being used in

recent years. Subsequently exploring various studies, we found that the estimation accuracy of these ML models is near to the

satisfactory level and gives enhanced results than that of non-Machine Learning based models.

KEYWORDS: Estimation, Machine Learning, Neural Network, Software Effort Model, Systematic Review.

 Software development Effort Estimation is the

process of estimating the cost and time to develop the

software. Collectively we call it Software Effort

Estimation. Estimations done at early stages of software

development play a vital role in effective software

project management. There are numerous algorithmic

and non-algorithmic models exists to estimate the

software effort but still the research advocates that on an

average, the overrun of the software projects appears to

be nearly 30 percent. [Torleif and Jorgensen, 2012]

 A detailed review was ushered by Jorgensen

and Shepperd, 2007 which ascertains nearly 10

estimation approaches for software effort estimation.

Amongst those methods, the dominating ones were

regression based methods and also the usage of expert

judgment and analogy based methods are growing.

Myriad of software effort estimation techniques exists

from expert judgement to analogy, empirical models to

statistical techniques.

 Instead of using expert judgment to decide the

minimum and maximum range of effort, software

specialists better focus to use historical data about

former estimation error to set realistic minimum–

maximum effort intervals [Jorgensen and Sjoeberg,

2003].

 Though expert judgment can be very precise, it

can also be simply misled. If the experts, who are

involved with estimating the effort, are made aware of

the budget, expectations of the clients, time availability

or other parameters that govern the estimation, the

estimations can be misled.

 One chronicle way to improve the precision of

effort estimates is using historical data and estimation

checklists consisting of various estimation parameters.

When relevant past data and parameter checklist are

included in the process, actions are less probable to be

overlooked, and it’s more likely to produce realistic

estimates. Many software organizations use tools for this

so that to improve software effort estimations.

 Too-low estimates can lead to lower quality of

product developed, possible rework in later phases, and

greater risks of project failure; whereas higher estimates

can diminish productivity in accordance with Parkinson’s

law, which states that work expands to fill the time

available for its completion [Jorgensen, 2014].

 Several studies corresponding to estimation of

effort analyzes and compares the precision of such

models and approaches. The study shows that There Is

No “Best” Effort Estimation Model or Technique. One of

the foremost reasons for this instability in results is

essential correlation between various parameters

governing the software effort, such as project size, type

of project, development environment etc. [Javier, 2001]

.In addition to this, the parameters which have prevalent

impact on the development effort seems to fluctuate,

signifying that estimation models should be personalized

to the environments in which they’re used.

 In past few years, machine learning centered

methods have been getting growing consideration in

software development effort estimation research.

Amongst various popular estimation models like

algorithmic model and expert judgement, Machine

learning based models are also considered as an

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

important category of effort estimation [Mendes et. al.,

2003 & Elish, 2009].

 Zhang and Tsai, 2003 summate the uses of

many Machine Learning techniques in software

development domain, including support vector

machines, case-based reasoning, decision trees, artificial

neural networks, and genetic algorithms.

 Though the study on Machine Learning models

is growing in academia, latest investigations [Jorgensen

and Shepperd, 2007, Moløkken-Østvold et. al., 2004 &

Jorgensen, 2004] have shown that expert judgment

which a non-machine learning based model is still the

prevailing technique for software effort estimation in

industry.

 The purpose of this paper is to present a

systematic review of machine learning techniques

mainly artificial neural networks and its comparison with

existing empirical models. One of the most popular

empirical models used in the industry is COCOMO for

estimating the software effort. Although the research of

amalgamating machine learning has started from past

two decades, our paper mainly focuses on the latest

machine learning procedures being proposed and

implemented.

MACHINE LEARNING

 Machine learning solely focuses on writing

softwares that can learn from past experience. A

computer program is said to learn from experience ‘E’

with respect to some class of task ‘T’ and performance

measure ‘P’, if its performance at tasks in ‘T’, as

measured by ‘P’, improves with experience ‘E’ [Wang,

2003]. It is an extraction of knowledge from data.

Machine learning can be categorized into three types:

Supervised Learning, unsupervised Learning and

Reinforcement Learning. Supervised learning is where

we teach; train the machine using data already available

with the correct outcome. The more the dataset, the

better the machine will learn about that subject. After the

machine is trained, it will be given unseen data and

based on the past experience it will give the outcome.

Unsupervised learning is where the machine is trained

using a dataset without labels. The learning algorithm is

never told what the data represents and it infers a

function to define hidden structure from unlabeled data.

Reinforcement learning is the one in which training data

is available but unlike supervised one, correct

input/output pairs are never presented. Once the

unlabeled data has been processed it only takes one

example of labeled data to make the learning algorithm

fully effective. A good example is in playing games.

When a machine wins a game, then the result is trickled

back along with all the moves to reinforce the validity of

those moves.

 We are focusing on the problem of software

effort estimation and our goal is to create a machine

which can mimic a human mind and to do that it needs

learning capabilities. Once a machine is trained based on

the above category of learning, the effort can then be

predicted. The machine learning particularly neural

network approaches give estimations close to human

level estimations.

METHODOLOGY

 Here in this paper, Constructive Cost Model

(COCOMO) is being used for investigation purposes. This

regression based method to estimate effort has given by Sir

Barry Boehm in 1981 and then to adapt to new software

development environment, its new revised version

COCOMOII was published. Its various parameters are from

data of various historical projects. The procedure of effort

estimation is performed in following steps:

A. Preprocessing of Data

B. Procedure Setup

C. Selection of Input used

D. Experimentation

E. Evaluation Criteria

F. Testing and Validations

 All the models were implemented using

standard datasets available and trained with 70 percent

inputs as training data and rest used for testing and

validation purposes. In the papers that areexplored,

COCOMO 81, NASA (63), NASA (93), IBMDPS,

Kemerer, Hallmark and Maxwell datasets are used for the

Software development Effort Estimation.

NEURAL NETWORK TECHNIQUES FOR

EFFORT ESTIMATION

 Software development Effort estimation is a

challenging task for people associated with software

project management. Here, in this section, we present a

review of various neural network models for effort

estimation proposed and implemented by many

researchers.

 Researcher Venkatachalam, 1993 presented

simplified feed-forward neural network (FFNN) for

software development effort estimation. Venkatachalam

used back propagation neural network for estimating

effort exhausting 22 independent variables which were

COCOMO’s cost drivers. Evaluation criteria were not

specified with his study.

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

 Researcher Finnie et al., 1997 presented a

comparison of statistical regression based model with

other artificial Intelligence based estimation models for

estimation of software development effort. The

Researchers found out that statistical regression model

underperformed for intricate and complex software

projects while the Artificial Intelligence based models

provide agreeable estimation results. They considered

dataset among Projects from 17 organization and

Desharnais. MMRE was used as an evaluation criterion.

 Another researcher Heiat, in 2002 investigated

Feed Forward Neural Networks with function point and

Radial Basis Neural Network with Source Lines of

Codes for diverse datasets encompassing projects of

varied generation languages. For every dataset

separately, Heiat has given evaluation with regression

model. He utilized Kemerer dataset of 15 projects and

IBM DP service organization dataset of 24 projects for

first investigation, and for second trial, utilized Hallmark

dataset of 28 projects. The IBM and Kemerer projects

are developed using third generation languages while

Hallmark projects are developed with fourth generation

languages. The results have shown that artificial neural

network method is modest with regression when a third

generation language data set is used. But in case of

fourth generation languages data set or mixed dataset

were used, neural network methodology works

expressively precise for software effort estimation.

 Another Researcher Ideri et. al., 2006 applied

clustering algorithms with Radial Basis Feed Forward

Networks. For clustering the training sets, clustering

algorithms were used and evidenced that C-means with

Radial Basis Feed Forward Networks achieves improved

results with APC III algorithm with Radial Basis Feed

Forward Networks for software effort estimation.

 In 2007, Tronto et. al., made comparisons of

conventional linear regression model and simplified

Feed Forward Neural Networks for Boehm’s COCOMO

dataset. The experimentations were showed that the

Neural Network based method accomplishes enhanced

results as that of with linear regression model. The

reason for improved results is due to adaptable and non-

parametric nature of neural networks.

 In 2009, Reddy and Raju suggested a multilayer

feed-forward neural network to accommodate the

Boehm’s COCOMO and its parameters to estimate

effort. Reddy, Raju shared the complete dataset into

training and validation set. The ratio for division of

dataset is kept to be 80 %: 20 % respectively of total 63

projects. The various input parameters of the COCOMO

are accommodated with natural logarithmic order in

feed-forward neural network, which was a decent try to

place together expert knowledge, project data and the

traditional algorithmic approach into one single

framework which is appropriate to predict effort.

 Wong et. al. in 2008 presented a blend of neural

nets and fuzzy logics to expand the precision of

backfiring size estimations. The neuro-fuzzy method was

used to attune the conversion ratios with the goal of

minimizing the margin of error.

 Wei et. al. in 2010 are to assess the estimate

performance of the neuro-fuzzy model with System

Evaluation and Estimation of Resource Software

Estimation Model (SEERSEM) in software estimation

practices and to apply the architecture that combines the

neuro-fuzzy method with diverse algorithmic model. The

results of this research also demonstrate that the general

neuro-fuzzy structure can perform well with many

algorithmic models for refining the performance of

software development effort estimation

 Another researcher used the amalgamation of

Functional Link Artificial Neural Network (FLANN) and

Particle swarm Optimization (PSO) algorithm for

Software Effort Estimation [Benala et. al., 2013]. Hybrid

PSO-FLANN architecture is a type of three-layer Feed

Forward neural network. PSO algorithm is used to train

the weight of FLANN vector. Calculation has been done

on three datasets COCOMO 81, NASA63 and Maxwell.

Hybrid algorithm increases the accuracy of the input

vector parameters.

 Another hybrid approach by combining

Functional Link Artificial Neural Network (FLANN) and

Genetic Algorithms (GA) for effort estimations were

proposed by Benala, Dehuri in 2012. The Genetic

Algorithm fitness function will be selected to minimize

the error find out by evaluation criteria MMRE as shown

in equation:

f = 1MMRE

 Kalichanin-Balich, 2010 relates linear

regression, and Logarithmic regression with Feed

Forward Neural Network. According to the test results, it

has been witnessed that software estimate is more precise

and genuine using FFNN rather than regression and

logarithmic models. MMRE is used as an evaluation

criterion.

 Kumar V. et. al. 2008 used wavelet neural

network (WNN) with four approaches, i.e., WNN-

morelet, WNN-guassian, TAWNN-guassian, and

TAWNN-morelet. A Threshold acceptance training

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

algorithm is used for wavelet neural network, i.e.,

TAWNN. WNN-Morelet and WNN-

Guassianovertookvarious techniques. Results were

efficiently improved.

 Rao B.T. et. al., 2009 suggested a FLANN for

software effort estimation. It generates effort and then

processed final output layer. Its one shortcoming is that

in this relation between inputs and outputs is not

reasonable.

 Kaur J. et-al. 2010 instigated a back

propagation Artificial Neural Network of 2-2-1 design

on NASA dataset comprises of 18 projects. Input was

KDLOC and development methodology and effort was

the output. MMRE was found to be 11.78 with his

applied approach.

 Attarzadeh and Ow, 2010 proposed a new

model to accommodate COCOMO II. 5 Scale factors

and 17 Effort multipliers were used as input. A sigmoid

activation function is used to create network in order to

accomplish post architecture COCOMOII model. Results

shown in terms of MMRE, and Pred (0.25) to compare it

with algorihmic COCOMO.

 Attarzadeh et. al., 2012 projected a novel

software development effort estimation model

exhausting neural networks. In this, the Initial weights of

the network were set in such a way that it lead to

COCOMOII model. The proposed neural network model

provides improved result as related to COCOMO model

after appropriate training.

 Dave and Dutta, 2011 suggested a Adjusted

MMRE. They used NASA dataset comprises of 60

projects. Experiments were conducted with three

different assessment methods, i.e., Mean Magnitude

Relative Error, Modified Mean Magnitude Relative

Error, and Relative Standard Deviation. Three estimation

modes are used for this purpose, i.e., Regression

analaysis, FFNN, and RBFNN. According to authors,

RBFNN is found to be a superior technique for effort

estimation, on the basis of RSD and Modified MMRE.

COCOMO II

 Originally, the COCOMO model is given by

Boehm in 1981. It is implemented after various

investigation on 63 software projects [Boehm, 2000].

This empirical model provides effort in terms of cost and

schedule for a development of a software project. In late

1990’s, Boehm proposed COCOMO II [Rao et. al., 2009]

to accommodate the environmental changes in software

industry. The purpose of COCOMO model is to express

effort with software size and a series of cost and scale

factors, as given in the equation below:

PM = A. (SIZE)�.���∑ ������� 	. � EMj��
���

 Where A is a multiplicative constant, and the set

of SF (Scale Factor) and EM (Effort Multiplier)

parameters which have a strong impact on calculated

effort.

 Moreover Size can be calculated by various

methods like Kilo Source Lines of Code (KSLOC),

Function Points, Extended Function Points and

adaptation adjustment factors.

 Maximum work has focused based on

algorithmic cost models such as COCOMO and Function

Points. These might undergo from the shortcoming such

as the necessity to adjust the model to each individual

measurement environment coupled with very variable

accuracy levels even after calibration.

DISCUSSION

Table 1: Summarized methods of few Researchers

Researcher

(year)

Method

deployed

Dataset (no.

of projects

Evaluation

criteria

Vinay Kumar et

al (2008)

Wavelet Neural

Networks

IBMDPS

(24),CF

MMRE,

Pred(0.25),

MdMRE

B. Tirimula

Rao (2009)

C-FLANN,P-

FLANN,LFLAN

N

NASA(60) RMSE

Sriman

Srichandan

(2010)

Radial Basis

Functional

Neural Networks

COCOMO81

(252),

Tukutuku (53)

MMRE,

Pred(0.25)

Jaswinder

Kaur(2010)

Back propagation

artificial neural

network

NASA
MMRE,

RMSSE

Iman

Attarzadeh

(2010)

Back

Propogation

ANN

COCOMO

(63)

MMRE, Pred

(0.25)

Vachik S.

Dave(2011)

RBFNN, FFNN,

Regression

Analysis

cocomonasa_v

1(60)

MMRE,

Modified

MMRE,

RSD

Iman

Attarzadeh

(2012)

ANN-

COCOMOII

COCOMO-

1(63),

NASA93 (93)

MMRE,

Pred(0.25)

Jagannath

Singh(2012

Cascade Forward

ANN, Elman

ANN, Feed

Forward ANN,

Recurrent ANN

NASA(60)

) MMRE,

RMSE,

Means BRE,

Pred(0.25)

SrimanSrichand

an(2012)
RBFNN

COCOMO 81,

Tukutuku

MMRE,

Pred(0.25)

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

Various Performance Evaluation Criteria for Effort

Estimation

 The purpose of Performance evaluation criteria

is to identify the accurate and truthful implementation of

the effort estimation algorithms. The most significant

evaluation measures used in software effort estimation is

presented in table 2.

Table 2: Significant Performance Evaluation criteria

in effort estimation

Evaluation Criteria Explanation

RE� = actual� − estimated� actual�
Relative Error

MRE� = RE� ∗ 100 Magnitude of

Relative Error

MMRE = 1N / MRE�
0

���

Mean Magnitude

of Relative Error

MdMRE = Median(MRE) MdMRE is

Median (MRE). It

is measure for

mean MRE error

MER� = actual� − estimated� estimated�∗ 100

Magnitude Error

Relative is the

error relative to

the estimate.

MMER = 1N/ MER�
0

���

Mean of all

observations of

MER

MAE = 1n / actual�2
��� − estimated�|

Mean of Absolute

Errors

MAPE = / 4 567859:;<=7�>57<?: 567859: @n2
��� ∗ 100

Mean Absolute

Percentage Error

MSE = 1n /Aactual�2
��� − estimated�)B

Mean Squared

Error

RMSE
= C1n /Aactual� − estimated�DB2

���

Root Mean

Square Error

CONCLUSION

 The paper presented a number of Software

effort Estimation models based on machine learning

techniques for the choice of suitable Artificial Neural

Network techniques for calculating crucial effort for new

projects. The techniques considered are MLFF, RBFFN,

wavelet neural networks, Cascade Forward ANN, Elman

ANN, Feed Forward ANN, Recurrent ANN etc. That

trained and tested occurrences are considered with these

approaches. Purpose of this entire thing is evaluating and

comparing ANN methods with Post Architectural

COCOMO in prediction accuracy. Studies conducted on

Machine Learning techniques indicate that the estimated

cost of the software with these models has more rapidity

and precision of algorithmic models such as COCOMO

II, which is a widely used empirical model in software

industry. Further, effective results show that ANN

models in the local data are improved responses in

comparison with algorithmic models. The exploitation of

machine learning techniques like genetic algorithms,

fuzzy decision trees, case based reasoning, etc can also

be applied along with these approaches for topology

optimization and structural optimization.

REFERENCES

Torleif H. and Jørgensen M., 2012. "From origami to

software development: A review of studies on

judgment-based predictions of performance

time." Psychological bulletin, 138(2):238.

Jorgensen M. and Shepperd M., 2007. "A systematic

review of software development cost estimation

studies." IEEE Transactions on software

engineering, 33(1):33-53.

Jørgensen M. and Sjoeberg D.I.K., 2003. "An effort

prediction interval approach based on the

empirical distribution of previous estimation

accuracy." Information and Software

Technology, 45(3):123-136.

Jorgensen M., 2014. "What We Do and Don't Know

about Software Development Effort

Estimation." IEEE software, 31(2).

Javier D.J., 2001. "On the problem of the software cost

function." Information and Software

Technology, 43(1):61-72.

Mendes E., Watson I., Triggs C., Mosley N. and

Counsell S., 2003. A comparative study of cost

estimation models for web hypermedia

applications, Empirical Software Engineering,

8(2):163–196.

Tronto I.F.B., Silva J.D.S. and Anna N.S., 2008. An

investigation of artificial neural networks based

prediction systems in software project

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

management, Journal of Systems and Software,

81(3):356–367.

Elish M.O., 2009. Improved estimation of software

project effort using multiple additive regression

trees, Expert Systems with Applications,

36(7):10774–10778.

Zhang D. and Tsai J.J.P., 2003. Machine learning and

software engineering, Software Quality Journal,

11(2):87–119.

Moløkken-Østvold K., Jørgensen M., Tanilkan S.S.,

Gallis H., Lien A.C. and Hove S.E., 2004. A

survey on software estimation in the norwegian

industry, in: Proceedings of the 10th

International Symposium on Software Metrics,

Chicago, Illinois, USA, pp. 208–219.

Jørgensen M., 2004. A review of studies on expert

estimation of software development effort,

Journal of Systems and Software, 70(1–2):37–

60.

Wang, John, ed. Data mining: opportunities and

challenges. IGI Global, 2003.

Venkatachalam A. R., 1993. "Software cost estimation

using artificial neural networks." Neural

Networks, 1993. IJCNN'93-Nagoya.

Proceedings of 1993 International Joint

Conference on.Vol. 1.IEEE, 1993.

Finnie G.R., Wittig G.E. and Jean-Marc D., 1997. "A

comparison of software effort estimation

techniques: using function points with neural

networks, case-based reasoning and regression

models." Journal of Systems and

Software, 39(3):281-289.

Heiat A., 2002. "Comparison of artificial neural network

and regression models for estimating software

development effort." Information and software

Technology, 44(15):911-922.

Ideri A., Khosgoftaar T.M. and Abran A., 2002. Can

neural network be easily interpreted in software

cost estimation? World Congress on

Computational Intelligence, Honolulu, Hawaii,

pp 1162–1167.

Ideri A., Abran A. and Mbarki S., 2006. An experiment

on the design of radial basis function neural

networks for software cost estimation. IEEE,

information and communication technologies,

ICTTA, pp 1612–1617.

Tronto I.F.B., de-Silva J.D.S. and Sant’Anna N., 2007.

Comparison of artificial neural network and

regression models in software effort estimation.

In: Proceedings of international joint conference

on neural networks, Orlando, Florida.

Reddy S. and Raju K.V.S.V.N., 2009. A concise neural

network model for estimating software effort.

Int J Recent Trends Eng., 1(1):188–193.

Wong J., Ho D. and Capretz L.F., 2008. Calibrating

Functional Point Backfiring Conversion Ratios

Using Neuro-Fuzzy Technique. International

Journal of Uncertainty, Fuzziness and

KnowledgeBased Systems, 16(6):847–862.

Wei L.D., Danny H. and Luiz F.C., 2015. "Improving

software effort estimation using neuro-fuzzy

model with SEER-SEM." arXiv preprint

arXiv:1507.06917.

Benala T.R., Chinnababu K., Mall R. and Dehuri S.,

2013. “A Particle Swarm Optimized Functional

Link Artificial Neural Network (PSO-FLANN)

in Software Cost Estimation”, Advances in

Intelligent Systems and Computing Proceedings

of the International Conference on Frontiers of

Intelligent Computing, pp. 59-66, Springer-

Verlag.

Benala T.R. and Dehuri S., 2012. “Genetic Algorithm for

Optimizing Functional Link Artificial Neural

Network Based Software Cost Estimation”,

Proceedings of the InConINDIA, pp. 75-82,

Springer-Verlag.

Kalichanin-Balich I., 2010. Applying a Feedforward

Neural Network for Predicting Software

Development Effort of Short-Scale Projects,

presented at Eighth ACIS International

Conference on the Software Engineering

Research, Management and Applications

(SERA).

Kumar V.K. et al., 2008. Software development cost

estimation using wavelet neural networks,

Journal of Systems and Software, 81:1853-1867.

Rao B. T. et al., 2009. A novel neural network approach

for software cost estimation using Functional

Link Artificial Neural Network (FLANN),

International Journal of Computer Science and

Network Security, 9:126-131.

Kaur J. et al., 2010. Neural Network-A Novel Technique

for Software Effort Estimation, International

RIJWANI AND JAIN: A PRELIMINARY PERFORMANCE EVALUATION OF MACHINE LEARNING…

Indian J.Sci.Res. 14 (2): 208-214, 2017

Journal of Computer Theory and Engineering,

2:1793-8201.

Attarzadeh I. and Ow S. H., 2010. Proposing a new

software cost estimation model based on

artificial neural networks, in 2nd International

Conference on Computer Engineering and

Technology (ICCET), pp. V3-487-V3- 491.

Attarzadeh I. et al., 2012. Proposing an Enhanced

Artificial Neural Network Prediction Model to

Improve the Accuracy in Software Effort

Estimation, in Fourth International Conference

on, Computational Intelligence,

Communication Systems and Networks

(CICSyN), pp. 167-172.

Dave V. S. and Dutta K., 2011. Neural network based

software effort estimation & evaluation criterion

MMRE, in 2nd International Conference on

Computer and Communication Technology

(ICCCT) pp. 347-351.

Boehm B. W., 1981. "Software engineering economics".

Boehm B. W., 2000. ”Software Cost Estimation with

COCOMOII”, Prentice Hall.

Srichandan S., 2012. A new approach of Software Effort

Estimation Using Radial Basis Function Neural

Networks, International Journal on Advanced

Computer Theory and Engineering (IJACTE)

1:2319-2526.

