Indian J.Sci.Res. 10 (2): 115-119, 2020

Original Research Article

HAEMATOLOGICAL MANIFESTATIONS IN VITAMIN B₁₂ DEFICIENCY CASES-SINGLE CENTRE STUDY IN NORTH INDIA

NOSAD HUSEN¹

Department of Pathology, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India

ABSTRACT

In this study vitamin B_{12} deficiency is correlated with the haematological manifestations which are common in the human population of the northern parts of India. The importance of haematological manifestations in relation to vitamin B_{12} deficiency is not recorded in the literature so far. Estimation of the clinical profile of vitamin B_{12} deficiency in the human population of north region of India and to stabilized association/relationship between hematologic manifestations with vitamin B_{12} deficiency. All symptomatic patients of pernicious anemia requiring blood transfusions and vitamin B_{12} who had either raised their mean corpuscular volume (MCV) or bicytopenia/pancytopenia on complete blood count were symptomatic screened for vitamin B_{12} deficiency. A total of 110 cases and 110 controls were diagnosed those have anemia records. Total 110 (50.0%) were males and 110 (50%) were females of all the age groups. The average mean age was found 35.5±9.7. Vitamin B_{12} deficiency was recorded in 120 (70%) patients. This deficiency was severe in 40 (3.12%) cases and moderate Vitamin B_{12} deficiency was recorded in 10 (12.5%) cases. In the present study vitamin B_{12} deficiency has found a strong co-relation with the as pernicious anemia. This study has clear indications to evaluate to B_{12} status in cases manifesting with such features especially in cases.

KEYWORDS: Pernicious Anemia, Vitamin B₁₂ Deficiency, North Indian Population

Deficiency of vitamin B₁₂ has been an acknowledged clinical aspect since long time (Kumar et al., 1989). In megaloblastic anemia may be due to unusual maturation of hematopoietic cells caused by damaged DNA synthesis. Two vitamins, cobalamin (vitamin B_{12}) and folic acid are essential for DNA biosynthesis. Another serious disease is also known as pernicious anaemia due to vitamin B₁₂ deficiency (John et al., 2009). The traditional manifestations of B_{12} deficiency was first acknowledged in pernicious anaemia, the exact cause was not known that time. Pernicious anaemia initially acquired its suitable environment and ultimately may be fatal with haematological manifestations of the disease mainly due to vitamin B₁₂ deficiency (Iqbal et al., 2009). Deficiency of vitamin B₁₂ is also responsible for the malfunctioning in the maturation of the nucleus and cytoplasm of hastily regenerating cells. Inside hematopoietic system, this abnormality causes irregular nuclear maturation with normal cytoplasmic maturation (Linker and Damon, 2012). Such type of irregularities apoptosis, ineffective erythropoiesis, intramedullary haemolysis, pancytopenia and typical morphological abnormalities in the blood and marrow cells may be common (Khanduri et al., 2005).

In the reported studies the effects of B_{12} deficiency are mainly recorded in the blood and nervous system. The biochemical evidence of vitamin B_{12} deficiency in the structure of increased blood and tissue levels of MMA and homocysteine and waning levels of the portion of vitamin B_{12} leap to trans-cobalamin

¹Corresponding author

preceded the manifestation of any deficiency. This condition has also been known to as subclinical vitamin B_{12} deficiency (Tanner *et al.*, 2003).

In the northern region of India the common causes of anemia is due to vitamin B_{12} deficiency and congenital hemolytic anemia. Severe anemic patients are requiring regular blood transfusions under the supervision of expert health workers. Many studies have been mentioned that vitamin B_{12} deficiency could be more widespread in this region than anticipated (Tanner and Liz Bisson, 2004). This provoked us to carry out a scientific study in this area. We perform a case study between April 2018 to May 2019 and documented the prevalence of vitamin B_{12} deficiency with anemia in this hospital.

The aim of this study was to resolve the actual relationship between the vitamin B_{12} deficiency and the manifestation of haematologigcal symptoms along with other related factors.

MATERIALS AND METHODS

In this case single centre study over a period of 11 months (April 2018 to May 2019) at a tertiary care hospital of government institute of medical sciences, Greater Noida, U.P. (India). Before the collection of samples from patient's a written consent form was taken. The patients of anemia were managed over a period of 11 months. In these study pregnant and lactating women, children, adults and olds were considered randomly. The patients who are already on Vitamin B₁₂ and folic acid substitution were excluded from study. Hemogram was estimated using 2 ml of ethylene diamine tetraacetic acid (EDTA) anti-coagulated blood in programmed Beckman Coulter 500 FC series analyzer. Anemia was considered as hemoglobin (Hb) < 13 g/dL in males and Hb < 12 g/dL in females, as per WHO recommendations of anemia. Harsh anemia was estimated as Hb < 8 g/dL. The patients of anemia with mean corpuscular volume (MCV) > 100 fL were considered with peripheral blood smear (PBS) (Pappo et al., 1992), bone marrow examnations, and estimation of Vit B₁₂ and folic acid levels. Peripheral blood smear reminiscent of MA was estimated by of macro-ovalocytosis, attendance anisocytosis, neutrophils poikilocytosis, hyper-segmented and pancytopenia. The diagnosis of MA was established with bone marrow aspiration studies where occurrence of hyper-cellular marrow with enlarged erythroid/myeloid ratio, megaloblasts, giant bands and metamyelocytes and reduced megakariocytes support the diagnosis of MA. Vitamin B₁₂ and folic acid levels were calculated by the using chemi-luminescence approaches (Nizamani et al., 2014). Normal levels of Vitamin B₁₂ and folic acid were estimated at 211-911 pg/ml and >5.38 ng/ml correspondingly as the protocol of WHO. Comprehensive dietary histories of all the patients were recorded. Diet record such as non vegetarian diet was considered as diet consisting mainly of animal food. Mixed diet was considered as food containing of both plant and animal source. Similarly, vegetarian diet was considered of food of plant origin and milk, while pure vegetarian diet was recorded as vegetarian diet (Premkumar et al., 2012).

A prescribed questionnaire was developed to record the family history of eating of drugs including proton pump inhibitor was considered with along with surgery record. Alcohol intake and amount of alcohol intake was recorded. Any other diseases such as neurological symptoms, Liver function tests, Lactate dehydrogenase, Upper gastrointestinal endoscopy and biopsy from stomach and duodenum were recognized.

By using the statistical formula we have calculated 220 sample size. Total sample size was 110 cases and 110 were controls for this study.

Statistical Analysis

For the authentication and validation of our data we used SPSS version 16. Different proportions and qualitative variables were estimated using chi-square test. A P value of less than or equal to 0.05 was measured statistically significant (Aminoff *et al.*, 1999).

RESULTS

A total of 110 cases patients and 110 controls were diagnosed those have anemia records. Total 110 (50.0%) were males and 110 (50%) were females of all the age groups. The average mean age was found 35.5 ± 9.7 . Vitamin B₁₂ deficiency was recorded in 120 (70%) patients. This deficiency was severe in 50 (3.12%) cases and moderate Vitamin B₁₂ deficiency was recorded in 30 (12.5%) cases. The deficiency of Vitamin B₁₂ levels were found in around 10 (25.0%) individuals. The deficiency of vitamin B₁₂ was a serious concerned in the females of reproductive age group (18-40 years) constitute 80 % (Total pregnant women were studied, 109) of their categeory.

In this study red blood cell indices are grouped as per diverse groups of vitamin B₁₂ levels. Highest value of Mean Corpuscular Volume (MCV) and Mean Corpuscular Haemoglobin (MCH) were found 140 fl and 45.9pg respectively in the harshly in vitamin B_{12} deficient group. In this study a strong and positive correlation was observed between vitamin B12 deficiency and platelet count in the patients. Calculated P value of this correlation was recorded statistically significant (P≤0.001). Vitamin B₁₂ deficiency and leukocyte counts (WBC) were also recorded significant positive correlations with P value ≤0.001. There was also a significant negative correlation was estimated between vitamin B12 deficiency and Mean Corpuscular Volume (P value=0.020). Similarly a strong negative significant correlation was also observed between Mean Corpuscular Haemoglobin and Mean Corpuscular Haemoglobin Concentration. In some cases 208 (13%) pancytopenia was recorded with vitamin B₁₂ deficiency persons which was found statistically significant (P<0.001). In the peripheral blood film assessment macrocytes were pragmatic in 460 smears (28.75%) with hyper-segmented neutrophils in 516 smears (32.25%).

S.N.	Amount of Vitamin B ₁₂	Cases (N)	Mean	Standard Deviation 585.94	
1.	Normal (> 240pg/ml)	60 (35 %)	710.25		
2.	Borderline Vitamin B ₁₂ deficiency (170-240 pg/ml)	92 (11.2%)	195.29	25.83	
3.	Vitamin B ₁₂ deficiency (< 170pg/ml)	40 (25.0 %)	205.37	29.90	
4.	Severe Vitamin B ₁₂ (<100pg/ml)	28 (28.0 %)	238.08	26.07	
	N=	220 (100%)			

Table 1: Estimation of Vitamin B_{12} levels (n = 220)

Table 2: Estimation of Red Blood cell indices

S.N.	Amount of Vitamin B ₁₂	MCV	МСН	МСНС
1.	Normal (> 240pg/ml)	106.55 ± 9.04	33.10± 6.8	31.00± 4.3
2.	Borderline Vitamin B ₁₂	107.81 ± 10.01	34.1 ±6.0	29.98 ± 6.8
	deficiency (170-240 pg/ml)			
3.	Vitamin B ₁₂ deficiency (<	106.45 ± 6.8	33.0±7.5	31.08 ±1.8
	170pg/ml)			
4.	Severe Vitamin B ₁₂	110.01 ±6.58	35.01 ±7.66	32.25 ±5.6
	(<100pg/ml)			
	N=	220 (100%)		

Table 3: Estimation of Pearson's correlation of Vitamin B₁₂ deficiency (N=220)

S.N.	Parameter	MCV	МСН	MCHC	WBC	Platelets
1.	Correlation coefficient	-0.231	-0.185	-0.108	0.594	0.802
2.	P-value	0.017	0.056	0.263	< 0.001	< 0.001

DISCUSSION

In this study hematological aspects were corelated with vitamin B_{12} deficiency clinically. It commonly presents haematologically as pernicious anaemia as disorders. In Northern part of India vitamin B_{12} deficiency is an important cause of pernicious anaemia. In the present study the role of vitamin B_{12} deficiency recorded in a significant level. In the literature it has stated that 49.5% of non-anaemic adult cases have either deficient level of vitamin B_{12} alone or combined with folic acid deficiency (Nazeem and Uttra, 2007).

The data obtained in our study were mentioned in Table 1 showing that prevalence of vitamin B_{12} deficiency to be 64.2%. Similar data were mentioned by Khanduri and Sharma (2007) (65%). Similarly, Ahmed *et al.*, (2012) has estimated vitamin B_{12} deficiency in 72.6% in their study. With the support of this study Sarode *et al.*, (1989), Sen *et al.*, (2015) and Hashim and Tahir (2006) had also recorded the occurrences of B_{12} deficiency to be 76% in their studies. A study conducted by Garewal *et al.*, (1972) has mentioned increased prevalence of B_{12} deficiency 88% in the studies conducted at Delhi. On the other hand some authors have mentioned that low prevalence (39.9%) and (36.5%) of vitamin B₁₂ deficiency such by Gilgit Agency of Pakistan, and Bhatia et al., (2012) of Karnataka correspondingly. The variations of vitamin B₁₂ may be due to the dietary deficiency associated with various cultural and may be due to difference geographical regions. But in northern India preponderance of the population are vegetarians and mixed dietary habits. A population based study at West Bengal and Karachi (Summer et al., 1996) have mentioned vitamin B12 deficiency in 79 % and 85% of non-vegetarians correspondingly. Thus vitamin B₁₂ deficiency may also noticed in non-vegetarians too. There are some extra features may also responsible to create deficiency of B₁₂ are mal-absorptive states such as Tropical sprue, Giardiasis, gastrointestinal infections due to H. pylori, autoimmune gastritis, gastric surgeries, surgery beneath nitrous oxide anaesthesia, anticonvulsants, proton pump inhibitors etc (Jain et al., 2012).

To avoid sex discrimination we have selected no of males and females in equal ratio in our study. There

are 800 males representing 50% of our study population. On some other studies females reported predominately and found that females are more prone to vitamin B_{12} deficiency. Similarly, women in the child bearing group and lactating mothers groups (18-40 years) constitutes around 80% of vitamin B12 deficiency. Similar data has been obtained in the present study whereas women 75 %. In the study conducted by Bhatia et al., (2012). they reported low level of vitamin B₁₂ in the reproductive age group is a subject of apprehension as low maternal vitamin B₁₂ status is associated with increased risk for hematological defects. This may be due to intra uterine augmentation retardation and a cause of low birth weight. According to the WHO recommendation a serum B₁₂ value of 300pg/ml should be required before a woman get pregnant.

In the present study vitamin B₁₂ deficiency affects the cases mainly haematologic, gastrointestinal and nervous system. Majour haematological manifestations were anaemia, leukopenia, thrombocytopenia, pancytopenia, macrocytosis and hyper-segmented neutrophils in peripheral smear and megaloblastosis in bone marrow which were recorded. Yuksel et al., (2006) have found in their study that haematological disorders at the rate of 96% in an assessment of B₁₂ deficient groups. We have recorded vitamin B₁₂ and folate deficiency and high Mean corpuscular volume (MCV) values in erythrocyte indices in the cases. Wheeler et al., (1977) have recommended that vitamin B₁₂ should be resolute in anaemic patients with MCV higher than 100 fl. Thus we have selected inclusion criteria MCV \ge 96 fl for cases in our study. Erythrocyte indices were grouped based to levels of vitamin B₁₂ and highest mean values of MCV and MCH were experimental in the cases (vitamin $B_{12} \leq 100 \text{pg/ml}$). A statistical significant negative correlation of MCV with vitamin B₁₂ levels has been experimental in our study. Similar data has strong correlation with few other studies.

CONCLUSION

In the present study vitamin B_{12} deficiency has found a strong co-relation with the as pernicious anemia. This study has clear indications to evaluate to B_{12} status in cases manifesting with such features. In this region some amount of antenatal programmes including iron and folate are being provide to the pregnant and lactating mothers. But from our study it should be clear that fortifying foods with vitamin B_{12} may be suggested to cure pernicious anemia. Finally, for the exact suggestion and recommendations further studies would be needed in large population size.

ACKNOWLEDGEMENT

This study was permitted and supported by government institute of medical sciences, Greater Noida, UP. (India). The author is thankful to the government institute of medical sciences, Greater Noida to financial assistance.

REFERENCES

- Ahmed T., Rahman S., Ahmed S., Siddiqui A., Javed A. and Kamal J., 2012. Frequency of Vitamin B_{12} and Red cell folate deficiency in Macrocytic anaemia. J. Basic Appl. Science, **8**(2): 06-13.
- Aminoff M., Carter J.E. and Chadwick R.B., 1999. Mutations in CUBN encoding the intrinsic factor – Vitamin B₁₂ receptor cubilin cause hereditary megaloblastic anaemia. I. Nat. Genet., **21**: 30-313.
- Bhatia P., Kulkarni J.D. and Pai S.A., 2012. Vitamin B_{12} deficiency in India: Mean corpuscular volume is an unreliable screening parameter. The National Medical Journal of India, **25**(6).
- Garewal G., Narang A. and Das K.C., 1972. Infantile tremor syndrome: A vitamin B₁₂ deficiency in infants. J. Trop Pediat Clin India, 7: 203-208.
- Hashim H. and Tahir F., 2006. Frequency of Vitamin B_{12} and Folic acid deficiencies among patients of megaloblastic anaemia. Ann. Pak. Med Sci., 2(3):192-4.
- Iqbal S.P., Rakepoto G.N. and Iqbal S.P., 2009. Vitamin B12 deficiency a major cause of megaloblastic anaemia in patients attending tertiary care hospital. J. Ayub Med. C.A., 21(3): 92-94.
- Jain R., Kapil M. and Gupta G.N., 2012. M.C.V. should not be the only criteria to order vitamin B 12 for anemia under evaluation. Open Journal of Gastroenterology, 2: 187-190.
- John P. Greer, John Foerster, George M. Rodgers, Frixos Paraskevas, Bertil Glader, Daniel A. Arber and Robert T., 2009. Means Jr. Wintrobe's clinical Haematology, Vol. 1.
- Khanduri U. and Sharma A., 2007. Megaloblastic anemia: Prevalence and causative factors. Natl. Med. J. India, **20**: 172-5.

- Kumar S., Ghosh K. and Das K.C., 1989. Serum Vitamin B₁₂ levels in an Indian population. An evaluation of three assay methods. Medical Laboratory Science, 46: 120 -126.
- Khanduri U., Sharma A. and Joshi A., 2005. Occult cobalamin and folate deficiency in Indians. National Medical Journal of India, **18**(4): 182-183.
- Linker C.A. and Damon A.E., 2012. Blood disorders. In: Mc Phee SJ, Papadakis MA, Rabow MW (ed) Current medical diagnosis and treatment. 51st edition. McGraw Hill companies, Inc. New York. pp. 1161-1211.
- Nizamani G.S., Memon I.A., Memon A., Khan H.K., 2014. Vitamin B_{12} deficiency with Megaloblastic Anaemia: An Experience at Tertiary care Hospital of Sindh. J.L.U.M.H.S., **13**(1).
- Nazeem M.A. and Uttra G.M., 2007. Etiology of incidence of megaliblastic anaemia in District Gilgit. Pak. J. Pathol., **18**(1): 15-6.
- Pappo A.S., Fields B.W. and Buclanan G.L., 1992. Etiology of red blood cell macrocytosis during childhood. Impact of New diseases and therapies. Paediatrics, 89:1063-1067.
- Premkumar M., Gupta N., Singh T. and Velpandian T., 2012. Cobalamin and Folic acid status in Relation to the Etiopathogenesis of Pancytopenia in Adults at a tertiary care centre in North India. Anemia, Vol **2012**. Available from http://dx.doi.org/10.1155/2012/707402.
- Sarode R., Garewal G., Marwahia N., Marwahia R.K., Varma S. and Ghosh K., 1989. Pancytopenia in

nutritional megaloblastic anaemia. A study from North–West India. Trop. Georgr. Med., **41**: 331-6.

- Sen K., Sinhamahapatrsa P., Lalhmachhuana J. and Roy S., 2015. A study of clinical profile of Vitamin B_{12} .deficiency with special reference to dermatologic manifestations in a Tertiary care Hospital in Sub-Himalayan Bengal. Indian Journal of Dermatology, **60**(4): 419.
- Summer A.E., Chin M.M. and Abraham J.L., 1996. Elevated methyl malonic acid and total homocysteine levels show high prevalence of vitamin B 12 deficiency after gastric surgery. Ann. Intern. Med., 124: 469-476.
- Tanner S.M., Aminof M. and Wright F.A., 2003. Amnionless essential for mouse gastrulation is mutated in recessive hereditary megaloblastic anaemia. Nat. Genet., **33**: 426-429.
- Tanner S.M. and Liz Bisson R., 2004. Genetically heterogenous selective intestinal malabsorption of Vitamin B_{12} founder effects, consanguinity and high clinical awareness explain aggregations in Scandinavia and the Middle East. Hum. Mutat., **23**: 327-333.
- Wheeler L.A., Brecher G. and Sheiner L.B., 1977. Clinical laboratory use in the evaluation of anemia. The Journal of the American Medical Association, 238: 2709-2714.
- Yuksel S., Uslan I., Acarturk G., Colbay M., Karaman O., Maralcan M. and Demir S., 2006. A Retrospective Evaluation of patients with Vitamin B 12 deficiency. Medical Journal of Bakirkoy, 2(4).